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Preface
The background to this essay is my long standing and deep interest in the work of the British

economist John Maynard Keynes. Any one who has seriously dealt with matters of economic

theory must, sooner or later, delve deeper into the theory of probability.

In his young years, Keynes wrote Treatise on Probability1, which – using his own words –

was aimed at sorting out the ”curious relation between ‘probable’ and ‘ought’ ”. It was the

dissatisfaction which Keynes’s and the rest of the Bloomsbury group felt with the Cambridge

philosopher G.E. Moore’s analysis of ”ethics in relation to conduct” that spawned Keynes’s

writing of a treatise on probability.2 The intuitionist ethics of Moore’s Principia Ethica

conveys many important insights for the theory of probability, and it is crucial to understand

Keynes’s theory of probability.

The aim of this essay is certainly more limited than Keynes’s extremely ambitious work.

Rather than analysing ”the relation between probable and ought”, I want to argue what we

ought to mean by ‘probable’. Nota bene this is a ”normative” aim – it is about what the

concept of ”probability” ought to denote, not what it actually denotes.

Probability is such a vague and multifaceted concept that a study of its actual usage would

result in a veritable snake-pit. At any rate, it would not avail itself to comprehension within

the limits set by the format of this essay.

My point of departure is that ”probability” should be an objective concept. It should not

denote what we do believe, but it should denote what actually is and what we actually know.

This may be helpful to keep at the back of one’s mind when reading my account.

                                                          
1 Vide Keynes (1921).
2 Moore (1903), chapter 5 – ”Ethics in Relation to Conduct” in particular. For testimonial evidence on Keynes’s
and the Bloomsbury group’s attitude towards Moore, vide Keynes (1938).
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1. Introduction
This essay bears the title ”Epistemic Probability and Epistemic Weight – Means to Describe

Bayesian Posterior Distributions?”. The title, somebody said, sounds nice. But what is it really

about? The thing is not as difficult as the words. It should be no surprise that the concept of

”probability” is not entirely unambiguous. It can be given various interpretations, often named

”subjective probability”, ”frequentistic probability”, and the like.

”Epistemic probability” is a concept coined by the British statistician Ian Hacking.3 The

adjective ”epistemic” origins from Aristotle’s Nichomachian Ethics. Episteme roughly

translates to ”true and eternal knowledge”, the acquisition of which is one of the three

Aristotelian virtues (the others being techne – art skills, from which ”technology” stems, and

phronesis – modesty4). In the Anglo-Saxon philosophy literature, the term ”epistemology” is

frequently used to denote the theory of knowledge.

Thus, epistemic probabilities have got to do with our possession of knowledge, or

information. Hacking carefully distinguishes between epistemic probabilities and ”aleatory”

probabilities. As we should have some idea as to what epistemic means by now, we may

proceed to sort out the meaning of ”aleatory”. Surely most of you have heard the familiar

quotation ”alea iacta est” – the dice are thrown. ”Alea” means die, and ”aleatory” would,

somewhat clumsily, translate to ”dice-wise”. But what exactly do we mean by saying that a

probability is ”dice-wise”? Are not all probabilities ”aleatory”?

                                                          
3 Hacking (1975).
4 For an easy-to-read presentation, vide Flyvbjerg (1994).
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2. Aleatory probabilities
All of us are aware that a well-made die has a tendency to fall as often on any of its six sides.

After all, it is through dice games and dice experiments we gain our first insights into the

peculiar systematic of randomness. We have all patiently thrown dice in the secondary school

maths classes and noted the relative frequency of ”sixes”, only to find that is converges

towards one sixth as the number of dice rolls looms large. To this has been added that the

outright definition of the concept of ”probability” is the limiting value of a relative frequency,

as the number of trials becomes large.

Few doubt that probabilities of this ”aleatory” kind basically expresses a physical quality of

nature.5 The world is not deterministic, or pre-set, but ”randomness” really exists and

constitutes a highly palpable factor in our lives. And ”randomness” can, to some extent, be

systematised by using the concept of aleatory probability, just because some events have a

greater propensity to occur than others.

At closer inspection, ”randomness” or ”aleatory probability” shows to be very difficult, not to

say impossible, to define. This is by no means unique for this quality of nature. The quality of

”mass”, for example, is not defined, but merely exemplified by an international kilogram

prototype. It is left to our imagination what ”mass” really is. I associate myself with those who

take the view that ”aleatory probability” must be one of those intuitively intelligible

properties.

I do not believe that any real definition of ”aleatory probability” is possible. The closest we

can get is to circumscribe it into other, equally indefinable terms. This is a perfectly normal

procedure when it comes to the concept of probability, which is being practised by several

”schools” of probability theory.

In the theory of ”subjective probability”, which does not deal with what we call ”aleatory

probabilities”, but with something else, the concept ”probability” usually denotes the

subjectively held ”degree of belief”.6

In the theory of ”logical probability” the concept ”probability” usually denotes a relation

between propositions, of the kind »If p, then it is probable to the degree α that q.«, where p

and q denote simple propositions. One assumes that such a relation always exists between

every pair of propositions, and that the probability mirrors the ”rational degree of belief”, i.e.

that α is the degree of belief which a creature endowed with perfect logical intuition would

                                                          
5 One of those who claim that probability does not exist is Bruno de Finetti. Vide de Finetti (1990), introduction.
6 Vide e.g. de Finetti (1972), Savage (1954), Ramsey (1926, 1928).
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hold before q, provided that p.7 It should be pointed out that the concept of ”logical

probability” does not refer to the same phenomenon as our concept of ”aleatory probability”.

Thus, what we reasonably can do is to circumscribe our concept of ”aleatory probability” into

terms that are intuitively comprehensible. First of all, we must make clear that aleatory

probabilities are not states of mind, but rather qualities of the surrounding world, qualities of

nature. Therefore, aleatory probabilities have no immediate connection to the subjectively

held ”degree of belief”.

On the contrary, aleatory probabilities would correspond to something like the ”rational

degree of belief” under certain idealised assumptions. By this I do not mean that aleatory

probabilities are ”logical” in the sense that they express relations between propositions. It is

rational to hold a degree of belief that accords with the aleatory probability, but only under the

assumption that one has full knowledge about the true size of that aleatory probability. The

determining factor is the possession of knowledge or information. If one does not possess full

knowledge about the true size of the aleatory probability, then it is not certain that a rational

usage of the limited of the limited knowledge one actually has will lead to a ”rational degree

of belief” that accords with the aleatory probability.

We must carefully distinguish between true properties of the world, and our knowledge about

those properties. The mere case that an event is aleatorily probable of the degree Π, that does

not necessarily imply that we know it is. But to be able to discuss the magnitude of an aleatory

probability, we must first suppose that there is such a thing as ”aleatory probabilities”. For this

reason, the question what we know about an aleatory probability subdivides into two parts.

The first part is the question how we can know whether there exists such a thing as aleatory

probability in nature. If we should answer that question in the negative, we would render the

second part – the question of the magnitude of that aleatory probability – meaningless. For

this reason it is absolutely necessary to presuppose that aleatory probabilities exist, if we are

to discuss their magnitudes.

                                                          
7 Vide e.g. Keynes (1921), Carnap (1950).
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3. Metaphysics and morality
The question whether aleatory probabilities exist is basically metaphysical. It is about the

nature of the world, whether we live in a ”stochastic” world (in which aleatory probabilities

exist) or in a ”deterministic” world (in which they do not exist). Metaphysical queries, one

would think, do not belong to this kind of work.

The thing is we just cannot let the question pass, but we must make clear, or at least roughly

clear, what kind of decision we make when we take on a particular metaphysical stance. My

own view is that this is chiefly a moral decision.

For centuries, moral philosophers and theologians have discussed the question whether or not

man has a free will. Obviously the notion of a free will is intimately connected to the notion of

moral responsibility for our actions and deeds. For if the world would be strictly

predetermined by faith, so that we never ever really would have a choice, we could neither be

blamed for our misdeeds, nor praised for our kind actions.

Good and evil are merely fictions in a deterministic world, and the very thought of a

deterministic world is so absurd that we must dismiss it on the sole ground of its

consequences to morality. The only practicable stance is the notion that the world is not

deterministic, and that we ourselves – at least to some extent – can change the order of things

by making our own decisions and pursue actions thereafter. In this respect, man is an ”image

of God”, as we can and do constitute what the British economist and philosopher G.L.S

Shackle termed ”absolute origins”.8 Absolute origins to chains of events in the world,

scenarios conditioned by and affected by our voluntary decisions.

But if the future is not deterministic, or ruled by fate, what is it then? Even if ”randomness”

should not exist as a phenomenon in nature, the future development of the world would still

not avail itself to exact prediction, since it will be affected by decisions made by human

beings. Free will, our passing fancies, whims and caprice, our considered doings, will render

that part of the world, which lies within our powers to affect, unpredictable, at least to some

extent. This would still be so, even if the consequences of our decisions at a certain point in

time, once these decisions were made, would be (at least in principle) possible to determine

exactly. This is so because of the possibility of new decisions in the future changing the

scenario implied by decisions made earlier.

But it is not even certain that a particular array of decisions will lead to determinable

consequences. The really huge decision, if we may talk about anything like that, was God’s

                                                          
8 Vide Shackle (1974).
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decision to set the world off. Our perception of nature is of that kind. Some power – let us call

it God – once set the world machinery in motion, and rigged its development over time by

determining the natural laws. Ever since, says our mythology, God has not interfered with the

internal affairs of the world, but He has let the whole thing operate according to the initially

stated natural laws.

The deterministic perception of nature, which is usually associated with the French 19:th

century mathematician Marquis Pierre-Simon de Laplace, implies the very thought that

Laplace formulated.9 A creature of supreme intelligence would, according to this train of

thought, if it had access to all correct natural laws, and the locations and moments of all

particles in the universe at a specific point in time, be able to compute the development of the

universe in every small detail. Today, we would associate this ”supreme intellect” with some

kind of super-computer. The modern machine era association has turned the ”creature” to a

machine – the Laplace Machine.

Such a deterministic notion of the universe was the fruit of the success of Newtonian

mechanics, and this Weltanschau dominated science way into our century. Even such a

celebrity as Albert Einstein embraced it – ”God does not play dice”, he said. In perfect

accordance, Einstein’s theory of relativity is a completely deterministic theory, which – in its

present form – is incompatible with the later developed and non-deterministic quantum

mechanics.10

Quantum mechanics meant a breach with the deterministic perception of nature. The

metaphysical moral of quantum mechanics is that even if the natural laws are given by God

once and for all, these laws do not exactly determine what is going to happen, but they are

merely regularities in what is going to happen. When the world is viewed with the eyes of

quantum mechanics, the access to a Laplace Machine no longer helps. No intelligence in the

world can predict exactly what is going to happen in the future, even if it has full knowledge

of where the world stands at the moment. The quantum mechanical world is genuinely

”stochastic” in the sense that all future events are more or less probable – meaning that they

have different propensities to occur within a limited time-period. What a Laplace Machine

would be able to do, is to compute different future scenarios, each of which has a particular

probability, a specific propensity to occur. But not even the Laplace Machine will be able to

say which of these scenarios will actually occur.

                                                          
9 Laplace is also, paradoxically enough, known for his works on probability theory, in particular Laplace (1814).
10 For a brilliant popular presentation of the incompatibility of these theories, vide Hawking (1989). An easily
comprehensible presentation of the history of particle physics from the antiques to our time is Bergström and
Forsling (1992).
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It is this kind of Weltanschau that is associated with the concept of ”aleatory probability”. The

aleatory probability of a particular future event does not denote our subjectively held degree of

belief, but the rational degree of belief of the Laplace Machine. Since the Laplace Machine

know all natural laws, it follows that the rational degree of belief of the Laplace Machine is

exactly equal to the real propensity for that particular event to occur. Thus, the best

description of ”aleatory probability” is given by expressions like ”the propensity to occur”.

A matter of concern in the stochastic Weltanschau is to make clear what makes some events

happen and others not. It may be frustrating to be forced to succumb before this query and

admit to ourselves that we simply cannot determine that in every single case. Still this is what

we have to do if we embrace a non-deterministic Weltanschau. It is not at all certain that the

most probable scenario will be realised. For that reason, the non-determinist mythology must

contain a measure of  ”events’ mystique”.

In the end, ”chance” will determine the non-deterministic system, and the ”will of God” lies

near at hand – what remains of it within the frames of the stochastic natural laws, that is – as

the unfathomable factor determining what is actually going to happen, and which thereby

determines if and when a merely probable event will become a fact, or whether it will not

occur at all, and thus form what I have chosen to call a nullity or a non-event.

A Weltanschau, and mythology, of this kind comprises the possibility that man has a free will

and thus can constitute an absolute origin. In that way, the mythology is compatible with the

Biblical thought of man as an image of God, with an unfathomable capacity to generate

events, or nullities, within the frame set by the ”Blind Watchmaker” at Genesis. That

mythology would be unthinkable in a universe of the kind that Laplace and Einstein and

seemed to have conceived.

Strangely, the non-determinist perception of nature thus constitutes a presupposition for our

own free will, and hence for the existence of good and evil. The existence of aleatory

probabilities is maybe not liable to proof, but the notion of their existence is a moral

necessity. Our choice of mythology must be adapted to man’s needs to be a ”moral

creature”,11 and any mythology which denies us the possibility of being moral creatures stand

in contradiction to our needs and our nature. The notion of a non-determinist, aleatorily

probable world provides for these needs and thus constitutes a good mythology. A good

mythology should of course be preferred to, and chosen before, a bad one.

                                                          
11 A Zoon Politikon, vide Aristotle’s Ethics.
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Whether or not a phenomenon like aleatory probability exists is, to repeat, a metaphysical

question. Metaphysical propositions cannot be proved, but only enter axiomatically into a

system. I have argued that in our context, the choice of metaphysical axioms is a moral

question. The question is therefore wrongly formulated. This is not about whether aleatory

probabilities really exist or not, but whether aleatory probabilities ought to exist or not. My

opinion is that they ought to exist, and according to this view the axiom of future events being

aleatorily probable is simply held true. So far the question of existence.

When we have decided to postulate that aleatory probabilities exist, and that all future events

in the world are aleatorily probable, the question remains how probable those events are. But

before we proceed to discuss the magnitudes of aleatory probabilities, we should take some

time to reflect upon the very concept of an ”event”.
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4. Fundamental concepts in the theory of probability
The universe possesses extent in time and space. By setting time and space limits, we may

subdivide the whole world into partial universums, or event spaces. Event spaces are

delimited in a suitable way according to the phenomena we want to study. Examples of event

spaces are ”Sweden 1994” or ”the LEP accelerator at Stanford 13.05 hours 3 September

1987”, or some similar delimitation. When we talk about the ”world” we will mean such a

suitably chosen event space.

Apart from extent in time and space, the world possesses an array of properties which signify

various places in time and space. These properties, who describe what is the case in space and

time, constitute states of the world. The world is in a particular, actual state at any historic

point in time, and aleatorily probable states at any future point in time.

A complete listing of all properties of the world can seldom or never be carried out. In

practice, we limit ourselves to listing the properties who are relevant to the problem at hand.

Other irrelevant properties we leave out of the listing. The states of the world are thus

partitioned in two categories, the first of which contains the relevant properties, and the

second of which holds the irrelevant properties. When talking about states of the world in the

following digression, we will refer to the list of relevant properties.

What is there to decide whether a property is relevant or not? The relevance must be judged

from its effects on the object under investigation – the aleatory probability we are seeking.

Properties of the world who do not affect, or negligibly affect, the object under scrutiny can

safely be bypassed. The sifting of circumstances must be done from a judgement of what is

reasonable, founded in our experience. The larger the precision we wish in our studies of a

particular aleatory probability, the more carefully compiled and the more extensive must be

the list of relevant properties

Events are defined by the presence (or the absence) or a subset of the world’s properties at a

certain point in time and a certain extent in space which we shall call the premises of the

event. The premises of the event is determined by the amount of time and space occupied by

the event, i.e. the minimum necessary extent in time and space required to ”lodge” the event.

An event a is said to occur if (the properties) x are the case in [a: r, t] (co-ordinates for the

premises of a). If x is not the case in [a: r, t] , we say that the complementary event a’ to a

occurs. It is true that [a: r, t] = [a’: r , t], i.e. that a and a’ share the same premises. Let y

denote all other relevant properties of the world in [a: r, t]. Thus, in [a: r, t] it is either true

that ”x and y” is the case (a occurs), or that ”not-x and y” is the case (a’ occurs).
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As an event expresses a state of the world, it is true that for any future event a of the type A,

there is a number Π – the aleatory probability of a – such that

(4.1.) 0 < Π(a) < 1 ;

(4.2.) it is true that Π(a) + Π(a’) = 1 ;

(4.3.) for the mutually exclusive events a, b, c, ...   in Ω, it is true that

Π(a ∪ b ∪ c ∪ ...)  =  Π(a) + Π(b) + Π(c) + ...  .12

Let us now consider a number of event premises in the world. Let us assume for all these

premises that ”only x and y” is the case, or that ”only not-x and y” is the case. Thus, the events

in each of these premises are equal in all their relevant properties. The only thing separating

the events is their position in time and/or space. We then say that the events form a kind of

event A = [a1, a2, ..., am] , with the corresponding complementary kind of event A’ = [a’1, a’2,

..., a’m] .

When a kind of event A has been defined, it must be true that a number of event premises

exist in event space Ω in which events of the type A are possible. These event spaces we shall

call the A-premises in event space Ω. The number or A-premises in Ω we shall call the

population m, the number of which states the highest possible number of events type A in Ω.

Let ΩA denote the A-premises in Ω, and Ω’A the remaining part of that event space, or the

surroundings of ΩA. If Ω’A = ∅ , so that ΩA lacks surroundings, we shall say that ΩA is

exhaustive. When the state of the surroundings Ω’A is held constant, it holds true, regarding

future events type A = [a1, a2, ..., an] in Ω , that

(4.4.) Π(A) = Π(a1) = Π(a2) = ... = Π(am) .

The whole of this presentation surely appears both abstract and complicated. The reason for

its being rather complicated is that an event must be defined as a state at a particular time and

place. Since all events (except for the complementary event) cannot occur at that particular

time and place, or in those premises as we say, it is necessary to define a type of event from

the notion that events are to be alike in all respects but their time and/or place of occurrence.

The reason why we define types of events is that we want to specify the conditions under

which we know that aleatory equiprobability prevails for all events in the population. But the

mere definition of event types then shows to be insufficient, except for the case when the A-

                                                          
12 This is Kolmogorov’s axioms. The reference is Kolmogorov (1933).
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premises exhaust the entire event space. If not, there will be ”gaps” between the A-premises,

and in these gaps, other properties may occur, properties which must not be changing if we are

to be certain that aleatory equiprobability prevails.
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5. Quantitative probability and relative frequencies
Why, then, are we interested in discerning the conditions for aleatory equiprobability to

prevail for a series of future events? The reason for that is that we want to find a method by

which to measure the magnitude of an aleatory probability. The only way, as far as I can see,

to measure aleatory probabilities, is by first making sure that ”laboratory-type” experimental

conditions are at hand, i.e. than the surrounding factors – the environment of the experiment –

remain unchanged, and that the trials we perform have equally large probabilities to turn out

”favourably”.

By a favourable outcome of a trial we mean that an event of type A occurs. If a

complementary event of type A’ occurs we say that the trial comes out unfavourably. The

number of favourable outcomes we denote by #(A) ; the number of unfavourable by #(A’) .

When aleatory equiprobability prevails, we can show – by the central limit theorem – that the

relative frequency of favourable outcomes converge towards a particular determinate

proportion between zero and unity, as the number of trials (the sample n) becomes ”large”, by

which is understood that it approaches the number of ”possible” outcomes, m. This particular

proportion is the aleatory probability for a favourable outcome in each individual trial. Thus, it

is true, for all future events of type A in Ω, and under the assumption that the state of the

surroundings Ω’A is kept unchanged, that

(5.1.) lim n→m [#(A)/n]  =  Π(A) = Π(a1) = Π(a2) = ... = Π(am) ,

and, hence, that

(5.2.) lim n→m [#(A’)/n]  =  Π(A’) = Π(a’1) = Π(a’2) = ... = Π(a’m)  =

 =  1 − Π(A) = 1 − Π(a1) = 1 − Π(a2) = ... = 1 − Π(am) .

It is inadequate to take the step from throwing dice, or pursuing some similar kind of

laboratory experiment, and find that the relative frequency converges towards a particular

value, to define the concept of aleatory probability on the basis of a converging relative

frequency. If the aleatory probability that a particular kind of event will occur, say, that the die

we are holding in our hand, shows a ”six” when thrown, remains the same from trial to trial,

then the relative frequency will converge toward this very probability. But that does not

validate the opposite – that a converging relative frequency necessarily determines the aleatory

probability for a certain kind of event to occur. Let me take a simple example to illuminate

this.
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Suppose we have an urn containing a large number of black and white balls. The proportions

are unknown. With the aid of a mechanical device we draw balls from the urn, without

replacement. How large is the aleatory probability of drawing a white ball?

The first thing that springs to mind is of course to draw a decently large sample in order to see

how the relative frequency of white balls develops. But that is not enough. What if the balls

are of different size, and our mechanical device more often draws large than small balls? And

suppose the proportions of white balls is larger among the large balls than among the small?

In that case we are no longer dealing with a ”random” sample, and the relative frequency of

white balls is likely to diminish the more balls we draw. This is so, because the large balls

tend to be drawn first and they are ”whiter” than the small balls that are likely to be drawn

later in the sample series.

It is true that there is a limiting value for the proportion of white balls, the knowledge of

which we do not get until we have emptied the whole of the urn. But we dare not make any

inferences as long as we do not know beforehand that our sample is ”random”, i.e. that all

balls are chosen with an aleatory equiprobability.

To ensure that a sample series will give us a fair indication of the population’s composition,

we must first make sure that the sample draws are made with aleatory equiprobability. In other

words, the concept of aleatory probability enters at an earlier stage then the sample series as

such.

The example shows that when we are talking about a limited (finite) population size, the mere

fact that a certain proportion of ”white balls” (or whatever we are sampling) exists in the

population is not sufficient for us to draw the conclusion that the aleatory probability of

drawing a ”white ball” is equal to that proportion.

If we, on the contrary, would draw our sample from the urn with replacement, things turn out

differently. Then the varying sizes of the balls no longer prevents us from drawing inferences

from the sample to the population. This case is interesting for the reason that we have to do

with a population that is finite in a way – it consists of the limited number of balls in the urn.

But in another way it is unlimited, since we can make as many draws as we like from that

population.

When speaking of the ”population”, we refer to the maximum number of trials, which in this

case would correspond to the maximum number of balls in the sample. Thus, the population is
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infinite. Due to the fact that we are dealing with the same balls all the time, which are steadily

replaced to that urn, we ensure ourselves that the infinite population has stable properties. The

proportion of white and black, of large and small balls is not changing over time. To

illuminate the importance of this stability, I would like to give another example.

Assume that we are studying the proportion of deaths in cancer, say, within ten years after the

cancer has been diagnosed. Since the number of cancer cases up to now has been very large,

and the number of future cancer cases can be said to be unlimited (at the very least we do not

know how large it will be), we may safely suppose that the population is unlimited when we

include in it both historic and future cancer cases. Historically the proportion of deaths in

cancer has been sinking constantly. I do not know the true figure, but let us assume, for the

sake of the example, that it has gone down from 90 percent in the year 1900 to about 30

percent today.

The mere fact that the proportion has been sinking gradually over time tells us that there has

been no intertemporally stable aleatory probability. The aleatory probability in question, let us

denote it by Π(A), has obviously gone down over time. For every specific point in time there

is a particular, unique value to Π(A). This unique value depends on the development level of

medical sciences, the access to adequate health services, hygienic conditions, etc. Let us

denote this by introducing a time index subscript Π(At). The space must of course be specified

too. Π(A) is likely to differ radically between Sweden and Uganda, for example. For this

reason a space indexing ought also to be entered, yielding Π(Ar, t).

It is characteristic that we are no longer dealing with a population with stable properties, at

least not when considering an extended period of time. The population is unlimited, though,

which separates this example from the first urn example above. Since the population does not

have stable properties, an investigation of Π(Ar, t) must be limited to such a short time span

that we may assume that the factors influencing Π(Ar) remain more or less unchanged. What

we are looking for is what the economists call ceteris paribus conditions – that ”everything

else remains the same”. For it is only when the relevant environmental conditions are

unchanged that the relative frequency may be used to quantitatively estimate aleatory

probabilities.

It is the very fact that ”the relevant conditions remain unchanged” that enable us to make

inferences when drawing with replacement from our urn in the prior example. In that case the

population had unchanging properties over time, despite its being unlimited. In the cancer

example the population’s properties were changing over time, which dashed our hopes to use

relative frequencies to estimate probabilities.
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In short, the conclusions of this somewhat tedious argument are the following:

Firstly, the concept of aleatory probability cannot be defined. It is an intuitively

comprehensible concept which denotes the ”propensity to occur” of a particular event. The

existence of aleatory probabilities, and an aleatorily probable world, is a moral necessity.

Secondly, aleatory probabilities cannot be quantitatively estimated unless we first make sure

that conditions prevail that guarantee a series of aleatorily equiprobable events. This requires

that (1) the relevant properties of the population and the surroundings are stable, and (2) that

the events make up what was defined above as a type of event, i.e. that they are equal with the

exception for their location in time and/or space.

The first condition – that the relevant properties of the population and the surroundings

remain unchanged – reminds of what is usually called the ceteris paribus assumption in

economics (that ”everything else remains the same”), which ensures us ”laboratory type”

conditions where influencing factors may be isolated. This condition is indispensable for us to

be able to estimate aleatory probabilities.

The second condition – aleatory equiprobability – is needed because a population can contain

several different properties (black–white/large–small ball), where a correlation exists between

the occurrence of the different properties. Therefore it is necessary to define a type of event in

such a way that no relevant properties may separate the events from one another. In our urn

example this means that white balls may only be white – they must not be big or small besides

that. In that case ”white balls” do not constitute a specific type of event.

The two conditions define what Ian Hacking is going for when he speaks of a Chance Set-

up,13  or an ”aleatory rigging”. An aleatory rigging is a prerequisite for the estimation of

aleatory probabilities, and provided this prerequisite is fulfilled, the aleatory probability will

coincide with the limiting value of the relative frequency when the number of trials becomes

large.

An aleatory rigging fills the function to guarantee that events with the properties we seek are

equiprobable. If we know that the events are equiprobable, it follows with certainty that the

relative frequency will converge towards a specific value between zero and unity. This is true

regardless of the population being limited or not.

                                                          
13 Hacking (1965), chapter 2. References to Cournot, Venn, von Mises, Popper and more are found throughout
Hacking (1965).
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The relative frequency does not fill a defining function, but only a quantifying function.

Aleatory probabilities cannot be defined, but they avail themselves to quantification – but only

under the particular forms which constitute an aleatory rigging. Since aleatory equiprobability

is a prerequisite for the relative frequency to converge, aleatory probability must be a deeper,

or prior, concept than the relative frequency as such.

If the limiting value of the relative frequency would define the concept of aleatory probability,

we would first have to be able to define an aleatory rigging without making use of the concept

of probability in that definition. For if we use ”aleatorily equiprobable” in the definition of the

events generated in an aleatory rigging, and then use the aleatory rigging to define the concept

of aleatory probability – then we are reasoning in a logical circle.

What we have above is to postulate two things: (1) that all future events have an aleatory

probability, and (2) that all similar events, which constitute a type of events, have equal

aleatory probabilities provided that the relevant properties of the surroundings remain

unchanged. Postulate (2) encapsulates the very notion of ”aleatory equiprobability”, which

means that the converging relative frequency is a consequence of the aleatory rigging, not a

prerequisite for it.
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6. Kolmogorov’s axioms and different types of probabilities
Most treatises on the theory of probability14 put Kolmogorov’s three axioms at the forefront.

They are usually described as a mathematical ”least common denominator” to an array of

different philosophical interpretations of the concept of probability. In that way, it is argued,

the calculus of probability can be taken as common to all various interpretations. In that way,

the mathematical side of the theory of probability is separated from the philosophical side.

Still, Kolmogorov’s axiom’s are usually presented in terms of events. But probabilities need

not refer to events. In the theories of Keynes and Carnap, probabilities refer to relations

between propositions. The Keynes–Carnap kind of probabilities are often called logical

probabilities.

One of the earliest explicit formulations of this principle, we find in Keynes’s Treatise on

Probability.15 Keynes’s idea is that probabilities express ”relations of partial implication

[RPI]” between propositions. A RPI is a ”softer” variety of logical implication. In ordinary,

demonstrative logic, the conclusions necessarily follow from the premises. The logic is two-

valued, and the operators either yield the value ”true” or ”false”, zero or unity.

Keynes conceived that a corresponding kind of logic could be constructed for positions in

between true and false, so that premises could support a conclusion partially. The better the

support for the conclusion, the higher the probability. The lowest value for the probability is

nil, which means that the premises make impossible the conclusion. The highest value is

unity, which means that the premises make necessary the conclusion.

There are interesting connections between Keynes’s concept of probability and what we have

chosen to call aleatory probabilities in the foregoing. Keynes emphasises that the construction

of a situation of equiprobability is required to make possible quantitative measurement of his

logical probabilities, and also for the ordinary theory of probability calculus to be applicable.

Even if Keynes’s theory was formulated before Kolmogorov’s axioms, there can be little

doubt that Keynes meant that the quantitatively measurable probabilities would obey these

axioms.16

The parallel to our discussion of aleatory probability, and the need for equiprobability to make

them quantifiable, should be obvious. Nevertheless the two concepts are entirely separate.

Aleatory probabilities are concerned with events in the world, and their propensities to occur.

                                                          
14 A good representative familiar to Swedish students is the presentation in Blom (1980), 23–24.
15 Keynes (1921).
16 Vide Keynes (1921), particularly chapters 4 and 5.
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Keynes’s probabilities are, to repeat, logical relations between proposition, for which there is

basically no need at all to assume any connection to the properties of the ”world”.

Another category of probabilities is the ”degree of belief” of the theory of subjective

probability. What a subject believes, or disbelieves, does not either necessarily have anything

to do with the properties of the ”world”. Nor needs a belief pertain to events of the world. For

the time being, I will not enter into a discussion of subjective probabilities, but only conclude

that such probabilities are also, with the aid of certain methods of measurement, liable to

quantification by numbers between zero and unity. Such probabilities may also be assumed to

obey the Kolmogorovian axioms.

The conclusion here is that it is true that the Kolmogorovian axioms can be said to constitute a

mathematical ”least common denominator” for the calculus of probability. And the calculus of

probability is the same in most approaches to the concept of probability. But it is incorrect to

formulate Kolmogorov’s axioms in terms of events, since there are interpretations of the

concept of probability that do not involve events.

It is also important to remember that Kolmogorov’s axioms only define a particular kind of

magnitude with certain mathematical properties. This purely mathematical magnitude we shall

call a Kolmogorov weight. Kolmogorov weights are functions of the subset Θi , i = 1, ..., n of

some suitable set Ω (Ω does not necessarily denote what we have called an event space

above).

In the theories of probability, Θi usually denotes propositions (subjective and logical

probability theory) or events (subjective and aleatory probability theory). But in principle, Θi

may denote anything subject to weighting by a linear scheme of weights, and where the

weights sum up to unity in Ω, i.e. weighting by Kolmogorov weights.

Kolmogorov’s three axioms may generally be formulated in the following way:

(6.1.) For every Θi in Ω , there is a real number Q – the Kolmogorov weight of Θi – such that

0 < Q(Θi) < 1 ;

(6.2.) it is true that Q(Θi) + Q(Θ’ i) = 1 , where Θ’ i denotes all other Θj in Ω , i ≠ j  ;

(6.3.) for the mutually exclusive subsets Θ1, Θ2, Θ3, ...   in Ω, it is true that

Q(Θ1 ∪ Θ2 ∪ Θ3 ∪ ...)  =  Q(Θ1) + Q(Θ2) + Q(Θ3) + ...  .

The point of expressing Kolmogorov weights on this level of generality is that we are now

free to apply them to a number of different theories of probability, whether concerned with
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events or propositions, or something completely different. In that way, the Kolmogorov

weights really become the ”least common denominator” of probability calculus which we

usefully avail ourselves of.

But there is more to it. For Kolmogorov weights need not at all be interpreted in terms of

probabilities. I many other situation, the construction of weighted averages for instance, we

use Kolmogorov weights without even thinking in terms of probability. Thus, an asymmetry

exists between probabilities and Kolmogorov weights: A quantitative probability is always a

Kolmogorov weight, but a Kolmogorov weight need not express a probability. Quantitative

probabilities thus express a special case of Kolmogorov weights, namely the case where these

weights express the magnitudes of probabilities.

This logical relation of implication between the magnitude of probabilities and Kolmogorov

weights is of great importance to grasp when we in due time will pass on to discuss epistemic

probabilities. But before we do, we will first discuss the problem how to choose models for

aleatory riggings.
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7. Stochastic variables, densities
Assume a function X from Ω to R1. X we shall call a stochastic variable. X is discrete if it can

take on a finite or countable infinite number of values. X is continuous if the first derivative of

the distribution function exists throughout the entire definitional set. We define the

distribution function of X as

(7.1.)      F(X)  =  Q(X < x)      ;      −∞ < x < ∞

the frequency function

(7.2.)      f(X)  =  Q(X = x)      ;      −∞ < x < ∞

in the discrete case; and the density function

(7.3.)      q(X)  =  dF(X)/dX

in the continuous case. q(x) we shall call the Kolmogorov density in x.

Remember that a quantitative probability is always a Kolmogorov density, but not the reverse.

When a Kolmogorov density is complemented with a probability interpretation we call it a

probability density. Thus, an aleatory probability density is a quantitative probability density

with an aleatory probability interpretation, etc. It is also true that a quantitative probability

density is always a Kolmogorov density, but not the reverse.

We will use lower-case characters throughout to denote densities. Kolmogorov weights are

denoted by a capital Q, and Kolmogorov densities by lower-case q; aleatory probabilities are

denoted by a capital Π, and aleatory densities by lower-case π, etc.
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8. Aleatory rigging and the choice of models
An aleatory rigging means that the type of event A in Ω , which we are dealing with, can be

described by a Bernoulli-type stochastic variable. Let X denote that variable. It is true that

(8.1.) X = 1      if a occurs

X = 0      if a’ occurs

The series of events of type A (and A’) may be described by a vector of the numbers zero and

unity, arranged in the temporal and/or spatial sequence that a and a’ occur.

Since all events are equiprobable in an aleatory rigging, it follows that the series of Bernoulli

trials either is binomially or hypergeometrically distributed. If the population is unlimited, the

former is true; if it is limited (finite), the latter is true.

Limited populations cause difficulties in certain cases. The cases I have in mind are when we

do not know how large the population is. It is easy to conceive a situation in which m must be

limited, but where we do not know the size of m. These cases are solvable if we can find a

probability distribution for m. But this brings on an unnecessary complication in our context,

and therefore we will not analyse this case further.

It should be pointed out that a finite population must be rather small (say, m < 50) for the use

of a hypergeometic distribution in numerical computations to make any significant difference,

compared to computations using the binomial distribution. The former converge to the latter

when m grows large. In practice, thus, we apply the binomial distribution to large populations,

and the hypergeometric to small, where the limit between ”small” and ”large” must be set to

match the degree of precision we require in computation.

Thus, the choice of models is very simple in an aleatory rigging. Small population →
hypergeometric distribution; large population → binomial distribution. Let  Y = [X1, X2, ..., Xn]

denote the variable created by the repeated Bernoulli trials. It is true that

(8.2.) Y  ∈  hyp(m, n, Π)

(8.3.) lim m→∞ hyp(m, n, Π)  =  bin(n, Π)

What we are to discuss in the following, and what epistemic probability and epistemic weight

is about, is the estimation of one of these model parameters, namely the aleatory probability

Π.
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The problem with aleatory probabilities is that even if we know that they exist (a morally

necessary assumption), in many cases we can still not know how large they are. As I

mentioned initially, the epistemic side of the probability theory deals with our possession of

knowledge.

To really know the true value of Π , it is necessary to possess full knowledge of the entire

population. In some simple cases (like the urn, for example), it is easy to find out the relevant

proportion in the population as a whole. But usually we must make do with knowing only a

part of the population, and then we must make inferences from this part to the whole.

To an omniscient creature, a Laplace Machine knowing all natural laws, such an inference

problem never occurs. The Laplace Machine always know the entire population; for such a

creature, there is no difference between the factual and its knowledge thereof. The inference

problem does not exist for such a creature – the theory of statistical inferences is there for us

common mortals, who often must make do with incomplete knowledge and partial

information.
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9. The inference problem
Our inference problem consists in our possessing an aleatory rigging of an event type A in Ω ,

so that we know that an aleatory probability Π(A) exists and that Π(A) has a particular

numerical value between zero and unity. But we do not know exactly what this value is. We

may have a rather good hunch about the value, by our knowledge of parts of the contents of Ω.

To be able to systematise this, we must first define some more concepts.

As soon as an event has occurred, its passes from being aleatorily probable to being a fact.

Thus, history is made of facts, and the future of aleatorily probable events. Facts are either

known or unknown. Either we know that the event a was the case, or we don’t.

We cannot know for sure whether future events really are going to occur, or if unknown facts

really did occur. But for both these phenomena, we can – provided they can be regarded as

spawned by an aleatory rigging – make inferences which characterise our knowledge position

with regard to the type of event at hand.

Assume, for instance, that we are dealing with historic facts of the type A (and A’) in an event

space Ω. Some of all these facts we know, while another part of them is unknown to us. If we

can assume that the generation of these facts A and A’ was part of an aleatory rigging in Ω, we

roll back in time, so to speak, to a point before the events occurred, and assume that they were

generated by an aleatory rigging.

We can never know the exact magnitude of Π(A), unless we first know all facts of type A in

Ω. But, to repeat, we can roughly infer the magnitude of Π(A). Of course, the precision of our

approximation depends on the amount of facts we know in Ω. The more facts we know, the

better approximation our estimate of Π(A) will be.

Now, assume instead that we are dealing with events of type A, in an event space Ω, partially

constituted by historic time and historic facts, partly by future and events which have not yet

occurred (and which must be unknown by definition). The principle for making inferences

still remains the same. We use the historic facts we know in Ω to draw conclusions about the

magnitude of Π(A). This, of course, also presupposes that A can be assumed to be generated

by an aleatory rigging, both in the historical and the future part of Ω.

Thus, the procedure for historical, but unknown, facts is in principle the same as for future

events. First, we delimit an event space Ω, and define the event type A. We count the number

of A-premises in Ω (the size of the population). We study whether or not the properties of the

surroundings are stable, which is a presupposition for aleatory equiprobability – a necessary



26

condition for an aleatory rigging. If such is the case, we proceed to count how many cases of A

and A’ we find in Ω – we collect known facts that is.

We use the facts at hand for making inferences to the A-premises in Ω, the contents of which

are unknown, either because they lie in the future and therefore lack content, or for the reason

that the historical content has not been registered and preserved.

This procedure leads to a more or less precise estimation of the aleatory probability of A in Ω.

The more A-premises in Ω we know the contents of, the better our estimation of Π(A) will be.

In other words: The more facts of the type A (and A’) we have in Ω, the better we can estimate

the aleatory probability of A in Ω.



27

10. Evidence
The set of facts of type A (and A’) which we know in Ω, and upon which we found our

inferences, we shall call the evidence set e = {e1, e2, ... , en}, where the elements  e1, e2, ... , en

constitute the evidence. Let us define the evidence value operator ε(ei). For ε , it holds that

(10.1.)      ε(ei) = 1  if ei is a known fact A ;

                 ε(ei) = 0  if ei is a known fact A’.

Thus, the evidence value operator is the ”factual” correspondent to the Bernoulli variable X,

which we defined for the outcomes of aleatory riggings. The evidence values may be arranged

in an evidence vector

(10.2.)E = [ε(e1), ε(e2), ... , ε(en)].

We define the evidence function

(10.3.)E(E) = ∑i ε(ei)/n ;  i = 1, 2, ... , n.

where E works like an ordinary arithmetical mean (expectation) operator.17 Thus, E expresses

the proportion of events of type A of all the facts of type A and A’ that we know in Ω.

Thus, inferences regarding Π(A) are made from the evidence we have in Ω. Since the ordering

of the elements in the evidence set e does not matter for our inferences (all events of type A

are both equal in properties and equiprobable in an aleatory rigging), E contains as much

relevant information for our inferential purposes as does e. Therefore it does not matter

whether we use E or e, and since E is easier to deal with mathematically, it is also clearly to

prefer.

                                                          
17 To distinguish the operator of the evidence function from an arithmetical mean in general, we shall use an
italic E to denote the former, and a non-italic E for the latter.
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11. Hypotheses
Possessing evidence is however not enough. We must also formulate hypotheses to which we

can confront our evidence. It is necessary to carefully distinguish between two kinds of

hypotheses.

The one category, which we shall call generator hypotheses, are propositions of the kind ”the

aleatory probability for the event a is Π”. All aleatorily probable events can be said to have

been generated in an aleatory probability process, with the aleatory probability, or the

generator probability Π. If Π is unknown, we can always formulate hypotheses as to its

magnitude. But if the events cannot be modelled with an aleatory rigging, we will not get

much farther than to the mere formulation of the hypothesis.

The aleatory rigging guarantees repetition of equal events with equiprobability under ceteris

paribus conditions. When such a rigging is at hand, we may proceed from formulating

hypotheses to evaluating how reasonableness of the hypotheses. When subject to an aleatory

rigging, generator hypotheses will be propositions of the kind ”the aleatory probability for

events of type A in Ω is Π”.

Since the real generator probability Π is a number between zero and unity, our guesses as to

the value of the generator hypotheses concerning Π must also dwell in the range from zero to

unity. In that way, generator hypotheses may be regarded as variables, who take on values

between zero and unity in R1. We shall denote this kind of variable by G. Thus, it is true that 0

< G < 1.

A generator hypothesis is either true or false. It is true if G = Π, and false if G ≠ Π. Generator

hypotheses are never aleatorily probable. The reason for that is that they are propositions, not

events. A generator hypothesis might well be conceived as subjectively probable, if somebody

should believe that G to a particular degree between zero and unity. Analogously, it is

conceivable that a generator hypothesis would be logically probable, provided it was

combined with some other proposition p, so that p implies that G is rationally believable to a

certain degree between zero and unity. But a generator hypothesis can never be aleatorily

probable. So far the generator hypotheses.

The other category of hypotheses, which we shall call empirical hypotheses, are propositions

of two different kinds: (1) ”a will be the case”, where a is a future event, or (2) ”a was the

case”, where a was an unknown fact. The former type we shall call empirical–future

hypotheses, the latter empirical–historical. We shall denote empirical hypotheses by H. H is

not a variable, but a symbol for ”fixed” propositions.
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Empirical–future hypotheses are, as distinguished from generator hypotheses, neither true nor

false. The events which the propositions concern still have not occurred, and we cannot state

with certainty that they will occur. We can only say that it is aleatorily probable that a will

occur. But that is not what an empirical–future hypothesis does. It states categorically that ”a

will  be the case”. Such a proposition will, in due time, become true or false – the former if a

occurs, the latter if a does not happen. But which is the status of such a proposition, before it

can be factually determined whether a really is the case?

Empirical–historical hypotheses (type 2) are, like generator hypotheses, either true or false.

Either a was the case, as the hypothesis stated, or it was not. But when unknown facts

constitute part of an aleatory rigging, we may reason ”as if” we were dealing with future

events. We then regard the facts we know as a sample drawn from the ”urn of history”, and

the facts which we do not know as the unknown contents of the ”urn”.

We simply disregard that we are dealing with facts, and boldly reason as if these events did

not yet occur, or were ”drawn from the urn of history”. The difference in our arguments about

historical and future events consists of the following: We know that certain, imperturbable

proportions prevail in the historic ”urn”, and that these proportions constitute the aleatory

probability we seek. But in the future urn, the proportions are not necessarily fixed (as long as

the population is finite), despite that we know that a particular aleatory probability exists. In

practice, this makes very little difference.

Obviously, and empirical hypothesis is not aleatorily probable. Only events can be aleatorily

probable, and an empirical hypothesis, be it future or historic, is not an event per se. But,

analogously to generator hypotheses, we may conceive that empirical hypotheses are

subjectively and/or logically probable.

Moreover, I will argue, empirical hypotheses are epistemically probable. This is a unique

property to empirical hypotheses – generator hypotheses are not epistemically probable. At

this point, I must ask the reader for some more patience with the explanation of the exact

meaning of this.

From this section, we should bear in mind

(1)  that different types of hypotheses exist – generator hypotheses G and empirical hypotheses

H ;

(2)  that hypotheses never are aleatorily probable ;

(3)  that empirical hypotheses, but not generator hypotheses, are epistemically probable.
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To bring our arguments further in the direction towards the concepts of epistemic probability

and epistemic weight, it is first necessary to define conditional Kolmogorov weights.
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12. Conditional Kolmogorov weights; Bayes’ theorem
Recall that aleatory probabilities are special cases of Kolmogorov weights, namely where a

particular interpretation (”the propensity to occur”) has been added to the purely mathematical

properties. An aleatory probability always is a Kolmogorov weight, but the reverse does not

necessarily hold true. Not to repeat the procedure of definition, we will carry out the definition

in terms of Kolmogorov weights. Exactly the same definitions may be applied analogously for

aleatory (or any other quantitative kind of) probabilities.

Assume two subsets A and B of some suitable set Ω (A and B may, but do not have to, denote

events). The conditional Kolmogorov weight for A, given B, is given by

(12.1.)      Q(AB)  =  Q(A ∩ B)/Q(A)

with the continuous case correspondent

(12.2.)      q(AB)  =  q(A ∩ B)/q(A)

If B1, B2, ... , Bn are mutually exclusive, possess positive Kolmogorov weights, and together

exhaust the entire Ω, then it holds true for every A that

(12.3.)      Q(A)  =  ∑i Q(Bi) ⋅ Q(ABi)

with the continuous case correspondent

(12.4.)      q(A)  =  ∫ q(B) ⋅ q(AB) dB 

and, under those same conditions, Bayes’ theorem holds

                                         Q(Bi) ⋅ Q(ABi)
(12.5.)      Q(BiA)  =  
                                       ∑i Q(Bi) ⋅ Q(ABi)

with the continuous case correspondent

                                         q(B) ⋅ q(AB)
(12.6.)      q(BA)  =  

                                      ∫ q(B) ⋅ q(AB) dB 
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Analogously to the denotations in Bayesian theory, we introduce the following terms: The

unconditional Kolmogorov weight Q(Bi) we shall call the prior weight. In the continuous

case, we shall call the unconditional Kolmogorov density q(B) the prior density. The

conditional Kolmogorov weight Q(BiA) we shall call the posterior weight. In the continuous

case, we shall call the conditional Kolmogorov density q(BA) the posterior density.

As long as we take into consideration the conceptual relation between Kolmogorov weights

and aleatory probabilities, we may boldly mix them in the same expression. The components

in Bayes’ theorem, for example, may partly consist of Kolmogorov weights, and partly of

aleatory probabilities.
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13. The likelihood function
Let us assume that we have access to certain evidence E from an aleatory rigging. If we

formulate a generator hypothesis, i.e. that we choose a value of G, then we can always

compute an aleatory probability for the evidence at hand having been generated in a process

with the probability G. The process is a binomial process if the population of the rigging is

”large”, and a hypergeometric process if the population is ”small”.

The procedure is to compute a conditional aleatory probability for E, given G, which may be

written Π(EG). The value of this aleatory probability always depends on three factors: (1)

The value of the generator hypothesis G, (2) the number of ”trials” n ( = the number of

elements in the evidence set e), and (3) the relative frequency of ”favourable” outcomes E ( =

the number of events type A in e divided by n). In case we have a ”small” population, (4) the

size of the population m ( = the number of A-premises in Ω) must also be taken into

consideration.

Thus, the conditional probability Π(EG) is a function of three (and four, respectively)

variables. This function we shall call the likelihood function, and we shall denote it by Λ( ).

We thus distinguish between two cases: (1) The discrete case, where the population is

”small”, and where the likelihood function obeys a hypergeometric distribution in G, E, m and

n.

 Gi  m − Gi 
 nE  n − n⋅E 

(13.1.)      Λ(G, E, m, n)  =  Q(EG, m, n)  =  
 m 
 n 

where Gi denotes the i:th of the (m+1) possible generator hypotheses. In the discrete case,

namely, G is a discrete variable, which may assume (m+1) different values: 0/m, 1/m, ... ,

((m−1)/m), m/m.

Case (2) is the continuous case, where the population is ”large”, and the likelihood function

obeys a binomial distribution in G, E and n.

  n  
(13.2.)      Λ(G, E, n)  =  Q(EG, n)  =  nE  ⋅ GnE ⋅ (1 − G)n−nE

where G is a continuous variable, 0 < G < 1.
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14. The maximum likelihood-method, unbiasedness
We will now introduce a distinction between three different kinds of generator hypotheses.

When G is supposed to assume a unique value, we shall speak about a point hypothesis. When

the value of G is supposed to lie within an interval (between a lower bound G0 > 0 and an

upper bound G1 < 1 , where G1 > G0 , we shall speak of an interval hypothesis. When several

hypotheses are conjoined by disjunctions (logical ”or”–operators ∨ ), we shall speak of a

composite hypothesis.

A common procedure to distinguish the ”best” of all conceivable point hypotheses is to seek

out that hypothesis which yields the largest possible probability for the sample mean E which

we did obtain, i.e. to seek the point hypothesis which has the largest likelihood value of all.

The is R.A Fisher’s Maximum Likelihood method [the ML method].18

This point hypothesis may easily be obtained by the usual methods to find the global

maximum of functions. The ML hypothesis GML is the value of G at which the likelihood

function reaches its maximum value. That is

(14.1.)      GML  =  {G :  ∂Λ(G, E, n)/∂G  =  0  ∧  ∂2Λ(G, E, n)/∂G2  <  0}

in the continuous (derivable) case. In the discrete case the same argument applies in principle,

only another algorithm must be applied to find the maximum. It can be shown that the ML

hypothesis GML always coincides with the sample mean obtained E. That is

(14.2.)      GML  =  E

The ML method is generally considered to have the advantage to often yield ”unbiased”

estimates. Unbiasedness means that if we have a large number of ”ML-estimators” GML from

the same population, then the expected value of these estimators, E(GML) will coincide with

the true Π of the population.

But the principle of unbiasedness is a doubtful story. For assume that we have k ML estimates

GML, j from the same population, and that each of these are a function of a sample [Ej, nj] (in

the continuous case) or [Ej, mj, nj] (in the discrete case), where j = 1, ... , k . Then we can

always ”pool” the samples by summing to [∑ E, ∑ n] (in the continuous case) or to [∑ E, ∑ m,

∑ n] (in the discrete case), where  ∑ E  =  ∑j nj⋅Ej/∑j nj ;  ∑ m  =  ∑j mj ;  ∑ n  =  ∑j nj .

                                                          
18 The method was allegedly used by both Daniel Bernoulli and Karl Friedrich Gauss (according to Hacking
1965, 176), but it is named after and associated to Fisher. The standard reference Fisher (1925).



35

In other words, the very notion of counting expected values from several ”estimates” from the

same population is self-contradictory. Our quantity of information must always be the total

information we get from all such ”estimates”. The procedure to chop this quantity of

information up and compute ”average estimates” by using the parts contains a self-

contradiction. We cannot both have access to all these ”estimates” and be unable to ”pool” the

to a common information background, from which we obtain a new estimate.

Therefore, the principle of unbiasedness is not applicable, and unbiasedness cannot constitute

a ”guiding principle”, according to which we judge whether a method of estimation is good or

poor.

Let me give a simple example. We have the customary urn with a number of black and white

balls in unknown proportions. Attach unity value to ”black ball” and zero value to ”white

ball”. Now assume that we have drawn three balls from the urn, so that E = 1 and n = 3. Then

the ML estimate, which is ”unbiased”, would be GML  = 1.

For purely intuitive reasons, I am sceptical to the proposition that the ”best” hypothesis would

be that G = 1 in case we have drawn three balls from the urn. Personally, I would not at all

suggest that G = 1 until I had drawn a rather large number of balls and found them all black.

But this raises the question whether this intuitive aversion to the ML method’s suggestion of

”best” hypothesis can be given a more solid foundation in rational arguments?

A characteristic of the ML method is that the choice of ”best” hypothesis mirrors a particular

aspect of the curvature of the likelihood function. Where the vertex of the likelihood function

is located, there dwells the ”best” hypothesis, according to this line of thought. But the

question is why this characteristic should be decisive?

If we want our ”best” hypothesis to reflect the position of the ”likelihood mass” (the area

beneath the likelihood curve), in my opinion it would be more natural to choose the average

likelihood value than the maximum. In that case, an Average Likelihood method [AL method]

would be more reasonable than the ML method, to characterise the hypothesis which ”best”

reflects the likelihood mass.

But not even the AL hypothesis needs be the ”best”. We may have particular reasons to

believe that some hypotheses in the interval [1, 1] are more reasonable than others, regardless

of which evidence we obtained from our trials. Therefore, we may conceive giving some

hypotheses a larger weight than others in our estimate, so that we use a Weighted Average

Likelihood method [WAL method], in which the array of hypothesis weights obey the
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Kolmogorovian axioms, and hence are Kolmogorov weights. The AL method will then appear

as a special case of the WAL method, namely when all hypothesis weights are equal.

Thus we may conceive several different methods built on the notion that the ”best” hypothesis

is obtained by studying the properties of the likelihood function. On this background it may be

objected that it is not the conditional probability of the likelihood function Π(EG) which is

our ultimate interest to obtain, but the ”inversely conditioned” probability Π(GE).

For what we are seeking is not the hypothesis which renders our evidence (the sample we

happened to obtain) the most probable.19 Instead we are seeking the hypothesis which is the

most probable, given our obtained evidence.

                                                          
19 ”Most probable” should be understood in a loose sense and not be interpreted in terms of maximisation.
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15. The Bayesian approach – two problems
To obtain the ”inverse” probability (or posterior probability) we are seeking, we must ”reverse

the conditioning”, which can only be done by applying Bayes’ theorem. In the discrete case,

we get

                                           Π(Gi) ⋅ Π(EGi)                   Π(Gi) ⋅ Λ(G, E, m, n)
(15.1.)      Π(GiE)  =    =  
                                         ∑i Π(Gi) ⋅ Π(EGi)              ∑i Π(Gi) ⋅ Λ(G, E, m, n)

since Π(EGi)  =  Λ(G, E, m, n).

Here already we discern a serious problem, namely Π(Gi). We did already establish that

anything like Π(Gi) does not exist – hypotheses are propositions, not events. Only events can

be aleatorily probable. Therefore, hypotheses cannot be aleatorily probable, and that is exactly

why there is no such thing as Π(Gi).

But if Π(Gi) does not exist, how can we ”reverse the conditioning”? The only feasible way is

to use the possibilities to mix aleatory probabilities with other kinds of Kolmogorov weights

in Bayes’ theorem. When we to reverse the conditioning, using that procedure, we obtain

                                           Q(Gi) ⋅ Π(EGi)                   Q(Gi) ⋅ Λ(G, E, m, n)
(15.2.)      Q(GiE)  =    =  
                                         ∑i Q(Gi) ⋅ Π(EGi)              ∑i Q(Gi) ⋅ Λ(G, E, m, n)

The result of the procedure – the inversely conditioned posterior weight Q(GiE) – is merely a

Kolmogorov weight, not an aleatory probability. For when we mix aleatory probabilities with

Kolmogorov weights in Bayes’ theorem (or other arithmetical expressions where this is

feasible), ”least common denominator” will be determining the outcome property.

All aleatory probabilities are also Kolmogorov weights, but not the reverse. Thus we cannot

take it that an arithmetical operation results in an aleatory probability unless all other

magnitudes in the operation are also aleatory probabilities.

Since our input values (the right-hand side of the Bayes’ theorem equation) are partly aleatory

probabilities, partly Kolmogorov weights, the result of the operation (the left hand side of the

equation) cannot express an aleatory probability. The ”least common property” – that all input

values are Kolmogorov weights – will determine property of the output.
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The fact that a the outcome of reversing the conditioning is a Kolmogorov weight, and not

(necessarily) a probability, brings on some interpretation problems of philosophical nature.

These interpretation problems are common for both the discrete and the continuous case. But

in the latter case there is another problem, which we first we first must describe and solve.

Therefore we shall leave the interpretation problem for the time being and get back to it later.

The continuous case version of Bayes’ theorem is

                                            q(G) ⋅ π(EG)

(15.3.)      q(GE)  =    =  ?
                                        ∫ q(G) ⋅ π(EG) dG 

The question mark indicates another problem, which only appears in the continuous case. In

the discrete case, we substituted the likelihood function both in the numerator and the

denominator of the right-hand side of the Bayes’ theorem equation. This cannot be done in the

continuous case, since the likelihood function  Λ(G, E, n)  =  Π(EG)  expresses an aleatory

probability, not an aleatory density. But Bayes’ theorem includes an aleatory density, not and

aleatory probability. How can we get by this dimensional problem?

The aleatory probability for our sample, as expressed in the likelihood function, depends on

which point hypothesis we formulate. As we have seen, the likelihood value expresses an

”ordinary” aleatory probability, not a density. This causes concern in the continuous case,

when we have an infinite number of conceivable hypotheses in the interval [0, 1].

For this reason a point hypothesis cannot be given an ”ordinary” prior weight Q(G), but only a

prior density q(G).

Alternatively, we may formulate an interval hypothesis, and give it an ”ordinary” prior

probability, but this procedure fails since it will not render a finite likelihood value

corresponding to that hypothesis. Why is that, then?

The likelihood function is a continuous function, the definitional set of which ranges from

zero to unity, namely the various feasible point hypotheses G about the Π probability of the

population. The value set contains (conditional) probabilities. It is important to grasp that

these are perfectly ordinary probabilities with a ”probability mass” of their own – they are not
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probability densities. It is tempting to prematurely conclude that the likelihood function, being

a continuous function, expresses probability densities. But such is not the case. 20

The implication of this is that we cannot form ”likelihood intervals” corresponding to interval

hypotheses, because each interval hypothesis will have an infinite likelihood value. This may

best be illustrated by computing the likelihood value for a composite hypothesis, the

components of which lie within the interval we are interested in.

For example, let us assume that we are interested in the interval hypothesis ”0,5 < G < 0,7”.

Now, form the composite hypothesis ”G = 0,5 ∨ G = 0,7” The likelihood value for this

hypothesis is

(15.4.)      Λ(0,5 ; E, n) + Λ(0,7 ; E, n)

Let us now expand the composite hypothesis by adding more points into it, for example ”G =

0,5 ∨ G = 0,55 ∨ G = 0,6 ∨ G = 0,65 ∨ G = 0,7”. The likelihood value of this hypothesis is,

correspondingly,

(15.5.)      Λ(0,5; E, n) + Λ(0,55; E, n) + Λ(0,6; E, n) + Λ(0,65; E, n) + Λ(0,7; E, n)

Now we see that the likelihood value will increase rapidly the more we ”comb” the interval

with conjunctions of point hypotheses. This shows that we cannot integrate the likelihood

function to compute ”likelihood intervals” corresponding to interval hypotheses.

The mere fact that the likelihood value swiftly exceeds unity when the ”teeth” of the

hypothesis ”comb” are condensed demonstrates that it is neither very meaningful to reason in

terms of interval hypotheses not in terms of composite hypotheses. Really, it is only the

simple point hypotheses who seem reasonable. The composite hypotheses only fill the

function to illustrate this argument, and the interval hypotheses aid – as we are about to see –

in the redefinition of the concept of ”point hypothesis”, so that it gets a meaningful

interpretation in the continuous case as well.

Thus there is a danger in mixing ”ordinary” Q-weights (or probabilities) with q-densities (or

probability densities) without reflection. To straighten this out, it is necessary to reformulate

the notion of point hypotheses. Instead of letting a point hypothesis denote one single

                                                          
20 Vide e.g. Hacking (1965), chapter XI, for a discussion of this. Hacking claims that ”the likelihood value does
not obey the Kolmogorovian axioms”, which is an erroneous proposition, founded on the confusion caused by
failure to distinguish densities from probability masses. The likelihood value is a conditional probability, and
conditional probabilities always obey the Kolmogorovian axioms.
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numerical value G, we must regard the point hypothesis as a limiting value to an interval

hypothesis G0 < G < G1, when the width of the interval  ∆G = G1 − G0  approaches zero. Such

a limiting value is preferably defined for the lower bound of the interval G0, which gives us

the following expression for the likelihood value of a point hypothesis G = G0 :

(15.6.)      lim G1→G0
 Λ(G0 < G < G1, E, n)  =  lim G1→G0

 Π(EG0 < G < G1, n)  =

                    =  lim ∆G→0 Π(EG = G0 + ∆G, n)  =  π(EG0)  =  λ(G0, E, n)

where  λ(G0, • )  expresses the likelihood-density at G0. By using point hypotheses in their

capacity as limiting values to interval hypotheses, and likelihood-densities, the probability

density for the point hypothesis will turn out ”dimensionally compatible” with the likelihood

value. Let us apply this on Bayes’ theorem in the continuous case. We get that

                                            q(G) ⋅ π(EG)                      π(G) ⋅ λ(G, E, n)
(15.7.)      q(GE)  =    =   

                                        ∫ q(G) ⋅ π(EG) dG              ∫ π(G) ⋅ λ(G, E, n) dG 

The dimensional problem in the continuous case can thus be considered as solved, by going

from using a likelihood mass Λ to using likelihood densities λ in the expressions. But the

former problem still remains – to give the prior weight (the prior density) and the posterior

weight (the posterior density), respectively, an interpretation in terms of probability. I must

ask the reader for further patience with this question.
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16. The WAL method is Bayesian!
Of course, we are not only interested in one single posterior weight Q(G0E)  (or q(G0E), in

the continuous case 21), corresponding to one single point hypothesis. We are seeking the

whole spectrum of posterior densities Q(GE) for all conceivable values of G, ranging from

zero to unity.

This ”spectrum” of posterior weights we shall call the posterior distribution. The shape of the

posterior distribution depends on two categories of factors. One is the array of evidence [E, m,

n]. The other is our choice of prior weights, or hypothesis weights, for the different

hypotheses. Our choice of hypothesis weights defines a ”spectrum” of prior weights, which

we shall call the prior distribution.

The shape of the posterior distribution thus partly depends on which prior distribution we use,

partly on which array of evidence we confront this prior distribution. The function of the prior

distribution is simply to weigh the evidence, as expressed by the likelihood value, by different

hypothesis weights. The result of this weighting is a certain posterior distribution.

The posterior distribution consists of Kolmogorov weights. Hence it has, like other

distributions of Kolmogorov weights (i.e. what is usually called ”probability distributions in

statistics textbooks), properties like location and dispersion.

When we compute the hypothesis-weighted mean over all conceivable values of the generator

hypotheses, we obtain a unique value, and that unique value is nothing but what we have

previously called a WAL estimate of Π.22

                                                          
21 Not to encumber the presentation, I will only show the discrete case in the text. I leave it to the reader to draw
parallels to the continuous case.
22 This, of course, presupposes that the sum (the integral) is finite, so that such a weighted average exists.
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Let α(G) denote the frequency function of the prior distribution (the array of hypothesis

weights), and ζ(G) the frequency function of the posterior distribution.

In the discrete case, it holds true that

(16.1.)      GWAL  =  ∑i Gi ⋅ ζ(Gi) ,

where

                                                          Q(Gi) ⋅ Π(EGi)                   Q(Gi) ⋅ Λ(G, E, m, n)
(16.2.)      ζ(Gi)  =  Q(GiE)  =    =  
                                                        ∑i Q(Gi) ⋅ Π(EGi)              ∑i Q(Gi) ⋅ Λ(G, E, m, n)

In the continuous case, it is true that

(16.3.)      GWAL  =  ∫ G ⋅ ζ(G)

where

                                                         q(G) ⋅ π(EG)                      π(G) ⋅ λ(G, E, n)
(16.4.)      ζ(G)  =  q(GE)  =    =   

                                                     ∫ q(G) ⋅ π(EG) dG              ∫ π(G) ⋅ λ(G, E, n) dG 

It is perfectly correct to say that the WAL estimate is based on a Bayesian procedure. The

WAL estimation involves that we (1) compute a Bayesian posterior distribution, based on the

distribution of hypothesis weights (the prior distribution) which we find suitable, and (2)

compute the arithmetical mean of the posterior distribution obtained.

Thus the WAL estimate is nothing else than the mathematical expectation of the posterior

distribution, i.e.

(16.5.)      GWAL  =  E[ζ(G)]

The same array of evidence [E, m, n] may certainly give rise to different WAL estimates,

depending on the scheme of weights applied for the hypothesis weighting, i.e. which prior

distribution we apply. Therefore there is reason to name the WAL estimates after the prior

distribution chosen. If the prior distribution is α(G), we shall say that the WAL estimate is α-

weighted.
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As mentioned above, the AL method is a special case of the WAL method, namely where

equal hypothesis weights are applied, i.e. that α(G) ∈ Re(0, 1). We then say that the WAL

estimate is unweighted, since an unweighted arithmetical mean is being applied.
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17. Dispersion of posterior distribution, evidence weight
As previously noted, the posterior distribution, like other distributions, has properties like

location and dispersion. A suitable way to describe these properties is to compute indicators of

location and dispersion.

The WAL method achieves one of the two – it gives us the expected value of the posterior

distribution, which is an excellent location indicator. But the WAL method does not render us

any idea of the dispersion of the posterior distribution.

The most common measure of dispersion is the variance (and the dimensionally adjusted

standard deviation). To complete the description of the properties of the posterior distribution,

it may be suitable to compute its variance, the posterior variance, which is defined by

(17.1.)      V[ζ(G)]  =  E[ζ2(G)] − E2[ζ(G)]

and the posterior standard deviation D[ζ(G)]  =  √V[ζ(G)] .23

When the same prior distribution is being used consistently in weighting evidence from a

certain aleatory rigging, the variance (and hence also the standard deviation) will always be

diminishing when the number of elements in the evidence set increases. In other words, an

increase in the quantity of information will reduce the dispersion of the posterior distribution.

A case of little practical importance, but which is very important in principle, is when the

evidence set is empty, i.e. when e = ∅. Even in this case the posterior distribution will often (I

say ”often” because the choice of prior distribution is crucial) have a definite expected value

and a finite variance. This is so, despite E not being computable (there are no terms by which

to compute the expected value E(E) )! This strange phenomenon depends exclusively on the

definitional peculiarity 0! = 1, which implies that

 0 
(17.2.)     0   =  0!/[0!(0−0)!]  =  1/1  =  1

This expression occurs both in the discrete and the continuous version of the likelihood

function, which guarantees that a likelihood value exists even when e = ∅. For the likelihood

function, the following simply holds true

(17.3.)      Λ(G, e = ∅, m, n = 0)  ∈  Re(0, 1)

                                                          
23 The definitions and the ensuing argument presuppose that a prior distribution which allows these computations
has been chosen. This proviso will cause no trouble in practice.
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and corresponding λ in the continuous case. Under these conditions, the likelihood function

lets the prior distribution ”right through”, so that the posterior distribution is congruent to the

prior distribution. My expression ”often” may thereby be specified more precisely. The

posterior distribution possesses an expected value and a finite variance even when e = ∅ , if

and only if the prior distribution possesses an expected value and a finite variance.

Which, then, is the importance in principle of this case? That question has two aspects. One

aspect is philosophical – how do we interpret the posterior distribution and its properties when

we have no evidence at all? Regarding this question, I must keep the reader curious for

another while. The other aspect, which is purely mathematical, we can deal with right away.

The choice of prior distribution will affect the posterior variance. As long as we stick to the

same prior distribution, it holds true that the posterior variance will shrink when the sample

size grows (larger evidence set). When the evidence set is empty, the posterior variance

assumes its maximum value. When the evidence set accommodates the entire population, i.e.

n = m, (or n → ∞  in the continuous case), so that we reach full knowledge about the whole

population, then the posterior variance will vanish. That is

(17.4.)      V[ζ]  =  0      if  n = m

in the discrete case, and

(17.5.)      lim n → ∞ V[ζ]  =  0

in the continuous case, respectively.

This is true regardless which prior distribution we choose (within reasonable limits, set by

properties like convergence of integrals). All imply that the posterior variance converges

towards zero when our evidence ”exhaust” the population. All prior distributions with finite

variance V[α] yield this very posterior variance when the evidence set is empty – i.e. V[ζ]  =

V[α] , provided that e = ∅ .

The posterior variance is near at hand to use as an ”information measure”,24 which reflects the

balance between what we know, and what we do not know. There are however two problems

in this context: (1) The variance is not a standardised measure – the maximum variance

                                                          
24 Many other information measures may be construed. In this connection we will concentrate on functions of the
posterior variance.
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(provided that it exists) always lies considerably below unity, and (2) the variance goes ”the

wrong way” – it goes down when n increases. An information measure ought to increase when

the information increases, not the other way around.

Thus the desirable properties of the magnitude we seek are the following: The magnitude

should (1) be a monotonously decreasing function of the posterior variance, (2) assume zero

value when the evidence set is empty, (3) assume unity value when the evidence set

accommodates the entire population (converge to zero when n → ∞ in the continuous case).

Moreover it is an advantage is the measure is dimensionally adjusted, so that it mirrors the

standard deviation rather than the variance. A square root function of the variance thus seems

suitable.

The chief problem of this approach is that we must find a method to standardise the prior

variances. Since they are different depending on which prior we use, they yield different

values of the posterior variance when the evidence set is empty.

But as long as the prior variance is finite, we can use (the inverted value of)  this maximum

posterior variance V−1[α] as an adjustment factor when computing the measure we are

looking for. By this procedure, the mathematical product of the adjustment factor and the prior

variance will always be unity, because  V−1[α] ⋅ V[α]  = 1 .

Since the adjustment factor is a constant, it also holds true that the mathematical product of

the adjustment factor and the posterior variance converges to unity as the evidence set

exhausts the population. Thus the adjusted posterior variance always goes from unity (when

the evidence set is empty) to zero (when the evidence set exhausts the population). Hence, the

adjusted posterior standard deviation (whose adjustment factor is D−1[α]  =  √V−1[α] ) also

has these properties.

The measure we are seeking, and which we shall call the weight of the evidence with respect

to the WAL estimate (denoted by WWAL, may easiest be defined as unity minus the adjusted

posterior standard deviation, that is

(17.6.)      WWAL  =  1 − D−1[α] ⋅ D[ζ]

The measure characterises our information position and thus the degree of precision25 of our

WAL estimate, given the chosen distribution of hypothesis weights (the prior distribution

                                                          
25 ”Precision” should be understood in a loose sense. We are not talking about the measure which is usually
called precision, and which is defined as the inverted value of the variance V−1.
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α(G)) . That is, WWAL measures the bearing of the evidence on the dispersion of the posterior

distribution in relation to the dispersion of the used prior distribution. Strictly speaking, WWAL

does not measure our information position as a whole, but merely the additional information

provided by our evidence.

It was Keynes who first suggested that the quantity of evidence (”the argument”) supporting a

logical probability should be called ”the weight of the argument”.26 This is an important part

of Keynes’s theory of logical probability. Even if our theory still moves on an abstract, purely

mathematical level, where we confine the interpretations of the Kolmogorov weights to regard

the likelihood value as an aleatory probability, there are parallels between the measure we

defined – the weight of evidence – and what Keynes calls ”the weight of an argument”, clear

enough to make suitable the naming of our concept after that of Keynes’s. 27

We must make clear to ourselves the difference between the concentration around the

expected value (the WAL estimate) of the posterior distribution on one hand, and the weight

of the evidence. The concentration of the posterior distribution reflects two things: (1) the

choice of prior distribution and the concentration of that chosen distribution, and (2) our

evidence and the ”contribution to concentration” which they bring about. The weight of the

evidence, on the contrary, only refer to (2), not to (1).

Both the location of the posterior distribution (the WAL estimate as such) and its dispersion

are affected by the choice of prior distribution. Thus that choice is significant to the estimates

we obtain, and for that reason it must be subjected to closer scrutiny.

                                                          
26 Vide Keynes (1921), chapter 6.
27 Excellent presentations of Keynes’s argumentation can be found in Runde (1990, 1991).
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18. The choice of prior distribution
The likelihood function can be said to ”encapsulate” the information, or the knowledge, that

we obtain by drawing a sample and studying the obtained evidence. The likelihood function

thus encapsulates an information addition, or the difference between the information position

before and after the acquisition of evidence.

The information situation before the acquisition of evidence we shall call the prior

information I α, , and the information situation after the acquisition of evidence we shall

consequently call the posterior information I ζ. It holds true that  I ζ = {I α ∪ e}.

It is desirable that we choose our prior distribution in such a way that it reflects our prior

information. In that way our posterior distribution will reflect our posterior information, too.

The problem of choosing a prior distribution may thus be expressed as the quest for the

information function φ , which transforms the prior information I α to a prior distribution α(G).

(18.1.)      α(G)  =  φ(I α)

An important philosophical question, which has to be cleared up before we can proceed to

erect a system where prior and posterior distributions reflect the respective information

positions, is whether there exists such a thing as a unique information function. The choice of

prior distribution thus implies that we must take on the difficult issue of how to

philosophically interpret the Kolmogorov weights (-densities) of which the prior distribution

consists.

But there is also another, practical aspect of the choice of prior distribution. As is it the case

that the larger the sample (the evidence set), the less important is the choice of prior

distribution to the location and dispersion of the posterior distribution. De various

distributions tend to converge when the sample grows large.

For that reason it is seldom necessary in practice to spend much mental effort on the choice of

prior distribution. One usually picks a suitable distribution which roughly fits with the prior

information, and which is mathematically convenient to handle. Such prior distributions are

preferably chosen within conjugated families of distributions.28 In our continuous case, where

the likelihood function is binomially distributed, a prior distribution ought to be chosen from

the family of beta distributions. 29

                                                          
28 We will not enter into a thorough discussion of these mathematical properties. Definitions and a discussion of
conjugated families of distributions are found in e.g. de Groot (1970), chapter 9.
29 For a definition of the beta distribution, vide e.g. Hogg and Tanis (1983).
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But the solution of the practical problems do not imply any solutions of the philosophical

queries. Even if we should use a certain, conjugated prior distribution for the sake of

convenience, the fact still remains that we try to approximate our prior information by using

it. For such a procedure to be justified, we must first, to repeat, clear up whether we really can

characterise prior information by a prior distribution. To approximate the information

function both presupposes that it exists, and that we know its shape.
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19. Facts, logic and the information function
When analysing the information function, we take particular interest in two problem

complexes. (1) What is really meant by the ”prior information” (and the ”posterior

information”)? Are these concepts subjective or objective? ; (2) How can we know that a

certain array of prior information yields one and only one specific prior distribution? (the

question of the existence of the information function), and – if it exists – How can we know

the shape of the information function? Let us take these questions on, one by one.

By ”information” we mean acquired factual knowledge. Endowed knowledge (an infant

knows how to breathe without getting any instructions) are not counted into this category. Nor

do we count intuition – like an excellent mathematician can find a correct proof without

having seen it first – or talent – like a musician with perfect pitch can tune up a G just like

that. Factual knowledge are concerned with what is the case, and what is the case cannot be

known until it really has been the case. Factual knowledge must be acquired, it is empirical

knowledge. It is that kind of knowledge we are speaking of when using terms like

”information” or ”knowledge” in our context.

Facts are objective. The very word ”fact” refers to what is the case. It is not enough that one

person, or even many persons, regard a phenomenon F to be the case for it to be established

as a fact F*. Something more is required, namely an examination according to some

established ethical code C, for a phenomenon to be established as a fact. When a phenomenon

has passed such a scrutiny, and thus is established as a fact, it does not matter how many

persons who regard F a fact. It may well be that all are touchingly unanimous that F is not a

fact.

If F has been established as a fact, and this is disputed by somebody (or by many), then it is

not only disputed that F*, but also the very code of scrutiny C. Provided C is right, and that C

has been correctly applied to F, then F* will stand fast regardless of how many who question

it.

A drastic, but illuminating, example, is the French historian Robert Faurisson’s denial of the

existence of gas chambers in Auschwitz. Let F denote the proposition that they did exist.

Now, it is an established fact F* that the gas chambers did exist. Let us say that this fact has

been established by the code C. What Faurisson must show is that C is inadequate, or that C

has been inadequately applied to F. Of course Faurisson is wrong – he is not able to show any

of these. That Faurisson happens to have followers does not alter the case. Even if the whole

human race would deny that F, it still remains that F*. It is an absurd thought that the whole
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human race would dismiss C, and it is equally inconceivable that the thorough documentation

of F*, by C, would be generally rejected.

All accumulated facts cannot be possessed by individuals, an obvious statement considering

the existence of libraries and databases. When correct facts are stored they form a pool of

objective experience. Such a pool constitutes a kind of collective memory bank. Historical

science, which is an important part of any scientific discipline, spends much of its efforts to

gather facts for such collective experience banks. This is not done indiscriminately, the aim of

the sifting is to only give real, true facts access to such banks. The information stored are

taken for objective facts, those who are discarded must live in the shadowy world of the

probable.

I will not go deeper into the intricate questions of ethics in science associated to this sifting.

But generally it can be stated that the question what should be established as objective facts

cannot properly be viewed as a matter of purely subjective considerations. Each scientific

discipline has its own code in this respect, and there are always unspoken or tacit rules on how

the discernment should be carried out. This codes have been laboriously established within

each separate discipline, and it may be difficult to find any general patterns of ethical rule

stretching across disciplinary boundaries.

Our prime interest in this context is however not the formulation of these rules. We are

content with the existence of such codes, and that they are applied to discern and establish

objective facts.

Factual knowledge can only refer to such objective facts. When we speak of knowledge (or

”information”), it is only allowed to refer to facts, not to any other personally or generally held

beliefs.

The prior information is the set of information we refer to in order to motivate the choice of a

particular prior distribution. This information mass may be large or small, as it pleases us. The

important thing is that we state which information we are referring to. The concept of

information is objective – it deals with facts in the collective experience bank. We need not

take all facts into consideration, but only the facts that are relevant to the problem at hand,

namely to estimate a particular aleatory probability Π(A) of a certain aleatory rigging in the

event space Ω.

The question of relevance is just as important in this context as it was to the rigging of the

aleatory process. What do we really mean by saying that facts are relevant? A reasonable
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definition is that facts are relevant if they affect the prior distribution. But is this not begging

the question? For how can we know what does, and what does not, affect the prior

distribution?

When we say ”affect”, we refer to a causal relation. The information function must refer to a

causal relation. We conceive that the prior information affects the prior distribution, and that

this affectation may be described by the information function φ.

It is a difficult philosophical question to determine what a causal relation really is, and

whether or not we can know that one phenomenon causes another. The British 18:th Century

philosopher David Hume argued that we never really can know whether causal relations really

exist.30 This is the famous scepticism of Hume’s. If Hume was right, that seems to imply that

we can never be certain about anything like an information function. Let us examine whether

things really are that bad.

The intricate philosophical questions about the concepts of cause and effect are closely related

to the theory of probability. However, going deeper into that complex of questions would

burst the frames of this essay. We must make do with the conclusion that causes are generally

dealt with using the same kind terms as with probabilities.

For example, we distinguish between real and known causes [causa essendi and causa

cognoscendi, respectively. This distinction corresponds to that between aleatory and epistemic

probabilities. The former refers to the ”propensity to occur” of an event, the latter to what we

know about that ”propensity to occur”.

But causes may also be conceived to be subjective. Let us call these probable causes. The

corresponding concept in probability theory is ”the degree of belief”, or subjective probability.

We may also conceive logical causes as an objective concept, corresponding to the ”rational

degree of belief” of the logical theory of probability.

When dealing with the information function it is important to distinguish between these

different categories, and the arguments associated with each of them. φ(I α) → α(G) can be

given different interpretations, even if we assume that the prior information I α is the same set

in all cases.

                                                          
30 The argument is to be found in Hume (1748).
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The subjective interpretation31 is that the consideration of I α implies that the individual or

subject believes that α(G). This interpretation is problematic, not least because the same I α

may lead to completely different α(G) depending on the subject. This, in a nutshell, is the

reason why the subjective theory of probability has its limitations for scientific purposes. If I

believe this, and you believe that – who is right? That question can only be answered if the

query really is a matter of fact.

If the concept of probability refers to the ”degree of belief”, then in the end there are no

matters of fact in the theory of probability. The probable is what we believe, and to reason

scientifically about pure matters of belief may be very awkward. Experience has shown

subjective probabilities to be most useful in axiomatic decision theory, where decisions are

assumed to be governed by the agents’ ”degree of belief”, as well as their preferences facing

different choice alternatives.

The logical interpretation is that I α implies α(G). Let us examine closer what this might

mean.

Assume that our present aleatory rigging of Π(A) in the event space ΩA is equal to another

known (subset of I α) aleatory rigging Π(B) in the event space ΩB . Then we know in advance

that Π(A) = Π(B). The result of this is of course that the investigation of Π(A) is superfluous.

We already know that Π(A) = Π(B), and the only generator hypothesis we have is GA = Π(B).

The prior distribution will then be a single-point distribution, where Q(GA) = 1, and the

posterior will consequently be that same. This case is obviously uninteresting.

Now assume that our present aleatory rigging of Π(A) in the event space ΩA is a subset of

another set of aleatory riggings Π(•) in the event spaces Ω• , where Π(•) lies in between two

values Π0 and Π1 . It follows that Π(A) also lies in between these two values. All generator

hypotheses outside the interval [Π0, Π1] are thereby excluded, and must be given zero

weights. But how do we know that Π(•) lies in the interval [Π0, Π1]? We cannot, unless we

know all riggings in Π(•) in Ω• , and if we know them, we also know Π(A) in ΩA which is a

subset of the former category.

More examples could be given. But the above should be enough to demonstrate the hopeless

character of the task to logically deduce α(G) from I α , at least by using ordinary two-valued

logic. It is possible that there is a ”relation of partial implication” (RPI) from I α to α(G), but

the question is which relation? And how large is ”the rational degree of belief” α(G) does I α

                                                          
31 A fervent advocate of this interpretation is de Finetti. Vide e.g. de Finetti (1972, 1990).
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bring about? No clear, practically useful theory has been constructed to deal with this

problem, and I suspect that such a theory will never be constructed, for that matter. The reason

for that might be that such a theory is plainly impossible to formulate.

So, even if there were a RPI going from I α to α(G), and that relation would be liable to the

interpretation that the certainty of I α causes the rational degree of belief that α(G), the fact

remains that we do not know this relation. If there really is a causal relation  φ(I α) → α(G) , it

is certainly not a known causal relation.

Let us now talk of known causes, about logical relations who demonstrably exist.

In our first example, with equal riggings, we do have that kind of relation. Equality is an

ordinary, two-valued logical operator. If it is true that the rigging  Π(A) in ΩA  =  Π(B) in ΩB ,

where ΩB ∈ I α , then it follows that all other values of GA than Π(B) must be incorrect. The

only possible value of GA is Π(B). In this case, the ”rational degree of belief” that GA is Π(B)

be unity, because it is a logical truth. Thus it is true that I α ⇒ α(GA), where α(GA) = 1 if GA =

Π(B) , and α(GA) = 0 if GA ≠ Π(B) . A logical information function φ can thus be defined in

this case. But we have no practical use of it whatsoever, as the case is trivial.

In our second example it is not possible (at least not with the means that presently are at our

disposal) to show that a logical implication  I α ⇒ α(G)  exists. If we choose a pair of arbitrary

values of G, say G0 and G1, we can neither show that  I α ⇒ α(G0)  nor that  I α ⇒ α(G1),

where α(G0) and α(G1) denote the values between zero and unity at the respective points of

the prior distribution. It is however not the case that the logical operator  – the implication ⇒
– has the truth-value zero. It does not exist.

This is our normal condition of proof. We can neither show that  I α ⇒ α(G0)  nor that  I α ⇒
α(G1). The conclusion that logical arguments are insufficient to determine a particular prior

distribution lies close at hand. That is to say that a logically based information function φ
simply does not exist in ”normal cases” (which are the cases who may be of any interest). I

shall now argue that such a function still can be defined logically.

The foregoing argument shows that the concept of knowledge must be extended from just

accommodating the collective pool of facts to embrace its logical consequences as well. If a

”new” fact follows logically from other, already accessible facts, we would know this new fact

too, thanks to our knowledge of the former and the logical operators.
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Assume two statement of fact F0 and F1. Also assume that F0 ⇒ F1. If F0 is a fact F*0 , it

follows that F1 is also a fact F*1. If we both know F*0 and the relation F0 ⇒ F1, we also know

that F*1 as soon as we carry out the logical operation ⇒ .

For us to know that F*1, without having any other sources to this knowledge than F*0 and the

relation F0 ⇒ F1, three things are required: (1) that F*0 is a known fact, (2) that the relation F0

⇒ F1 is a known relation, and (3) that we apply the operator ⇒ .

It is also important to distinguish between the truth value of a logical operator, and what I

shall call the knowledge value of a logical operation.
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The implication operator ⇒ has the truth value matrix

F1 true (F*1) F1 false

F0 true (F*0) True (1) False (0)

F0 false True (1) True (1)

Table 1: The truth value matrix for logical implications.

Assuming that we always know how to apply the implication operator ⇒ , the following

knowledge value matrix holds true

F*1 known F*1 unknown

F0 ⇒ F1 known Known (1) Unknown (0)

F0 ⇒ F1 unknown Unknown (0) Unknown (0)

Table 2: The knowledge value matrix for logical implications.

The interesting thing in our context is that all cells in the knowledge value matrix have zero

value when the logical implication (the operator) is unknown. This is shown by the second

row of the matrix, table 2.

There are good reasons to presume that a logical operator of the type ”partial implication”

(RPI) also has this property. That is to say, if we do not know the relation, the knowledge

value will be ”unknown” (or zero) even for the RPI as a whole. Since we do not know of any

RPI’s in reality, it follows that in all situations where a RPI possibly could be occurring, the

knowledge value would still be zero.

The point of a prior distribution is that it shall ”encapsulate” our prior knowledge – the prior

information. But if we apply a logical RPI approach it must hold true that the ”encapsulated”

prior knowledge are non-existent even if we have access to a large quantity of prior

information. The reason for that is that we do not know the logical relation (whether it be an

RPI or an ordinary two-valued implication) between the prior information and the prior

distribution. From this one is tempted to conclude that an information function φ cannot be

defined using the logical approach. But let us not give up!

What the φ-function is to achieve, is only a transformation of the prior information I α to a

distribution of Kolmogorov weights α(G), i.e. to numerical values between zero and unity

reflecting our prior knowledge with respect to different generator hypotheses. What, then do
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we know a priori about the generator hypotheses? Well, in the ”normal case” we know

nothing! We surely believe this and that, but strictly speaking we know nothing, despite all

conceivable prior information. The knowledge mass about the generator hypotheses following

from the prior information is – sad to say – hopelessly non-existent.

We must now recall that the prior distribution in no way shows our entire knowledge mass.

The only thing it shows is how much we know about the one hypothesis G0 in relation to the

other hypothesis G1.32

This ”relation” is usually regarded as a quotient when talking about probabilities. If the

probability of A is 0.25, and the probability of B is 0.75, then B is three times ”more probable”

that A. Thus the quotient of the probabilities is three. But we could just as well say that B is

0.5 Kolmogorov units ”more probable” than A. Then the ”relation” between the probabilities

is a difference.

Why this talk about ”relations”? Well, suppose the probability of A in the example were zero,

and the probability of B were zero as well, then it makes a huge difference whether we talk

about quotients of differences. The quotient between zero and zero is not defined, but the

difference between zero and zero definitely is.

Let us briskly return to the prior distribution. It shows the quantitative ”relation” between our

knowledge about the one hypothesis G0 and the other hypothesis G1. If this ”relation” refers to

a quotient, the situation is bad. Since we do not know anything about any of G0 or G1, the

quotient of these knowledge masses would be precisely ”zero divided by zero”, which is

undefined.

But if the ”relation” refers to the difference between our knowledge about G0 and G1, then the

whole thing turns out differently. We do neither know anything about G0 nor about G1, so the

knowledge masses – be they non-existent – are equally large. The difference between them is

clearly zero.

From this follows the only possible prior distribution. For if the prior distribution is to give

equal Q-weights to all generator hypotheses (which mirror our knowledge position which is

equally non-existent with regard to all hypotheses), as well as sum (integrate in the continuous

case) to unity, then the prior distribution must be a rectangular distribution.

                                                          
32 Of course we are dealing with a number of generator hypotheses G, a number which does not even need be
finite (in the continuous case the number of G-values is infinite). For the sake of reasoning we simplify by using
only two G-values.
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Thus, the prior distribution can be uniquely determined by using a logical approach, and that

approach always follows (in the ”normal case”) the same line of argument and always yields

the same result:

(1.)  No known logical relation exists between the prior information and our knowledge about

       different generator hypotheses.

(2.)  Therefore we know nothing a priori about any generator hypothesis.

(3.)  Since our knowledge position is equally poor with regard to all generator hypotheses, the

       difference in knowledge mass as to the different hypotheses is zero.

(4.)  To reflect this, the prior distribution must be rectangular.

Our knowledge position concerning the generator hypotheses may, despite all accessible prior

information, be described as an empty board – a tabula rasa. Therefore we shall call the

applicable prior distribution the tabula rasa distribution τ(G), which is uniformly distributed

for all values of G.

(19.1.)      τ(G) ∈ Re(0, 1). 33

When we ask ourselves the simple question ”What is the aleatory probability Π(A) of the

present aleatory rigging in Ω?”, de facto we cannot refer to anything outside this rigging.

Historical facts and experience give us no logical reason at all to favour the hypothesis G0 and

discriminate the hypothesis G1. We must unconditionally ask for Π(A) in Ω, we have no

logically motivated right to favour or discriminate hypotheses. No matter how many facts we

include in our prior information, our prior knowledge regarding α(G) is still a tabula rasa.

Thus the information function is extraordinarily simple. It yields the same prior distribution –

the tabula rasa distribution τ(G) – regardless of the contents of the prior information I α.

(19.2.)      τ(G)  =  φ(I α)

The relation φ between the prior information and the prior distribution is purely logical,

involving no subjective or ”personal” judgement. Paradoxically, it is the circumstance of the

prior information not implying anything about the generator hypotheses which enables us to

draw the logical conclusion that the information function must always transform the prior

                                                          
33 This is the prior distribution used by Laplace, and – some say – Bayes himself. The principle is to apply a
rectangular prior distribution when prior information is lacking is often called the ”principle of non-sufficient
reason”, or the ”principle of indifference”, as Keynes names it. Vide Keynes (1921), chapter 4 (”The Principle of
Indifference”), and Hacking (1975), chapter 14 (”Equipossibility”) for a thorough discussion and further
references.
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information to one and only one kind of prior distribution, namely the tabula rasa distribution.

”The choice of prior distribution” is therefore a somewhat misleading expression, for the prior

distribution chooses itself, by pure logic.
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20. Epistemic probability and epistemic weight
According to Ian Hacking, the modern concept of probability emerged in the 1660’s.34 The

word probability is much older that that, as are many other, more primitive notions of the

probability concept. Since the 17:th Century a vast number of improvement have been made

in the technique of probability calculus and inferences. The interesting point in our connection

is however that both theses aspects – prior calculus and inferences – were there from the

genesis of the probability concept. Hacking emphasises that the probability concept always (or

at least during its modern existence) been ”two-sided” or dual. On the one side there has been

”aleatory” probability, on the other side ”epistemic” probability.

It is a fact that we do not have, and in many cases never will have, exact quantitative

knowledge of the true aleatory probability of empirical phenomena. This state of affairs

implies a need for epistemic concepts, by the aid of which we may characterise our knowledge

position about the aleatory probability we seek. Keynes argues emphatically, and very rightly,

that such an epistemic concept must be two-dimensional.

Keynes called the one dimension the ”probability of the argument” and the other the ”weight

of the argument”. We shall adopt Keynes’s categorisation in probability and weight,

respectively, but stress that we give those concepts meanings similar, but not equal, to what

Keynes did. We shall also add the adjective ”epistemic” to distinguish these concepts from the

”aleatory” counterpart. What, then, do epistemic probability and epistemic weight really

mean?

We have already discussed the concept of aleatory probability in some detail, but the meaning

of the concept of epistemic probability was only briefly hinted at. It is really rather regrettable

that we could not proceed to the definition of the concept of epistemic probability until now.

But the thing is that the long journey here has been altogether necessary to clear up the many

enclosing problems.

As was mentioned initially, the word ”episteme” means eternal and unchanging knowledge,

the acquisition of which is one of the three virtues of Aristotle’s Nichomachian Ethics. While

aleatory probability refers to the rerum natura, the nature of things – the propensities of

events to occur – the epistemic probability refers to our knowledge about the propensities of

events to occur.

Aleatory probability is fundamentally objective. It is a property of nature that we cannot

change. According to Hacking, epistemic probability is fundamentally subjective. It is about

                                                          
34 Vide Hacking (1975), but also his exquisite Taming of Chance (1991).
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what we know, and what we know, Hacking tacitly argues, dwells in the minds of people and

therefore it must be subjective. I remain sceptical to this train of thought.

Hacking’s view that in the end, epistemic probability is subjective, appears erroneous to me.

The notion of anything being episteme – eternal, universal and true knowledge – also being

subjective, appears a self-contradiction to me. If there is such a thing as epistemic probability,

then surely it is not subjective, I would say. The Eternal, the Universal and the True must

reasonably be objective, and so must epistemic probability.

Epistemic probability reminds of what is usually called logical probability. Epistemic

probability is logical in the sense that it expresses an objective relation between a set of

evidence from an aleatory rigging, and an empirical hypothesis about the kind of event

defined in that rigging.

Recall that an empirical hypothesis H is a proposition of the kind ”a will be the case”, where a

is a future event, or ”a was the case”, where a is an unknown fact. H does not denote a

variable, but a ”fixed” proposition. First we distinguished between the empirical–future

hypotheses and the empirical–historical hypotheses, and found that the former type can be

neither true nor false, but that the latter type must be either true or false. Then we concluded

that if we are dealing with unknown facts, we could reason ”as if” empirical–historical

hypotheses were propositions about future events.

A hypothesis is never aleatorily probable, that goes for empirical hypotheses too. But

empirical hypotheses are epistemically probable. This is unique to empirical hypotheses –

generator hypotheses are not epistemically probable.

The events that empirical hypotheses H makes such categorical statements about, are either

unknown facts or future events (which have not yet occurred and which we do not know

whether they will occur or not). At first sight, the categorical formulation may appear

somewhat odd, but at closer inspection, it is fully reasoned. Just think of the opposite, that we

would formulate an empirical–future hypothesis H: ”a might occur”. How can we state

whether such a hypothesis is epistemically probable? We cannot. The moment of uncertainty

(the ”might” moment) in this example lies within the proposition. It must be moved out of the

proposition to enable us to speak about the proposition as epistemically probable.

Epistemic probabilities obey the Kolmogorovian axioms – they are Kolmogorov weights, to

which we add a particular philosophical interpretation. Strictly speaking an epistemic
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probability is always a conditional Kolmogorov weight. The conditioning refers to the

evidence presented, preferably expressed by the value of the evidence function E.

The presupposition for an empirical hypothesis  H: ”a will be (was) the case”  to be

epistemically probable with regard to the evidence E, is that the event a of type A is spawned

by an aleatory rigging Π(A) in the event space Ω.

The epistemic probability of H, given E, we shall denote by P(HE), and it is mathematically

defined as the expected value of the Bayesian posterior distribution E[ζ] when the tabula rasa

distribution τ(G) is applied as prior.

(20.1.)      P(HE)  =  E[ζα = τ]

Nota bene this is only the mathematical definition. The epistemic probability P(HE) always

numerically coincides with what we previously called a ”unweighted WAL estimate” of the

aleatory probability Π(A). But, as we recall, the ”unweighted WAL estimate” did not

necessarily have any particular philosophical interpretation. It is only in interpretation that the

epistemic probability P(HE) differs from an ” unweighted WAL estimate”. The epistemic

probability is an objective numerical expression for what we know about the aleatory

probability Π(A) in Ω.

For every epistemically probable hypothesis H, there also exists a number W(EH) – the

epistemic weight of the evidence E, with respect to the empirical hypothesis H – which is

mathematically defined as the standard deviation of the Bayesian posterior distribution D[ζα
= τ], adjusted by multiplication by the inverted value D−1[α] of the standard deviation of the

tabula rasa distribution.

(20.2.)      W(EH)  =  1 − D−1[τ] ⋅ D[ζα = τ]

The epistemic weight W(EH) always numerically coincides with what we previously called

the ”weight of the evidence with respect to (the unweighted) WAL estimate” of Π(A) in Ω.

But that magnitude did not necessarily have any particular philosophical interpretation. It is

only in the interpretation that the epistemic weight W(EH) differs from ”the weight of the

evidence...etc.”. The epistemic weight is an objective numerical expression for how much we

know about the aleatory probability Π(A) in Ω.

Epistemic probability is nothing but the epistemic correspondent to aleatory probability.

Aleatory probability refers to ”the propensity to occur”, and epistemic probability to ”what we
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know about the propensity to occur”. Alternatively, epistemic probability could be expressed

as the ”objective location estimate” of an aleatory probability.

Epistemic weight does not correspond to the location, but to the degree of precision, 35 of our

estimate of the true aleatory probability. Obviously, a well-founded estimate, which is built on

a large volume of evidence, must have a larger precision than a poorly founded estimate, built

on scanty evidence. In a way, the weight of evidence may be regarded an ”objective indicator”

of the quantity of evidence, or how much we know about ”the propensity to occur”. We might

also speak of the weight of evidence as an expression of the balance between knowledge and

ignorance, or the balance between what we do, and do not, know.

It is important to always characterise our knowledge position by stating both the epistemic

probability of H, given E, and the epistemic weight of the evidence E with respect to H. Thus

we should always state a pair of numbers [P(HE) , W(EH)] and not only one of the two

numbers. Lest we do, only one dimension will be reflected of our two-dimensional epistemic

position.

In the end, the concepts of epistemic probability and epistemic weight are not very

complicated. To comprehend their meaning must be an intuitive process. To compute them

numerically is not very complicated either, much thanks to the tabula rasa distribution being

generally applicable as prior.

Indeed, we only have two cases, which we shall call the discrete case and the continuous case,

respectively These cases each correspond to one type of event space. The discrete case is

strictly applicable when the event space Ω accommodates a finite number of A-premises

(when the population is finite); the continuous case applies when the number of A-premises is

infinitely large (the population is unlimited). In practice we disregard vi the population being

finite, provided it is large enough to make computations from the assumption of an infinite

population good numerical approximations.

For each case we have one, and only one, definite mathematical formula for the computation

of the epistemic probability, and one, and only one, definite mathematical formula for the

computation of the epistemic weight. Thus, there are four formulas all in all. These formulas

are to be found in appendices I (the continuous case) and II (the discrete case), respectively.

                                                          
35 ”Precision” should be understood in a loose sense. We are not talking about the measure which is usually
called precision, and which is defined as the inverted value of the variance V−1.
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Epistemic probability and weight are uniquely determined by the evidence [E, m, n] at hand.

In the continuous case, however, the size of the population m is omitted. The fact that only

three parameters affect the computations makes possible and desirable to ”once and for all”

carry out thorough numerical computations of epistemic probabilities and weights for a large

number of evidence arrays [E, m, n], and to cross tabulate the results like this is usually done

in tables of statistical distributions.

In particular, the continuous case ought to be manageable, considering that only two

parameters [E, n] are involved. The tabulation of the continuous case will thus be two-

dimensional (in the same fashion as the binomial distribution). The discrete case, however,

requires three dimensions (in the same way as the F-distribution), and will therefore me more

space-consuming as one cross-tabulation will be needed for every population size m.

As the sample (or the population) grows, the formulas will contain very large numbers. For

this reason, manual computation is unthinkable. Computer assistance is a necessity. My time

frames for writing this essay have unfortunately not been generous enough to allow the

required programming and computation. These computations are an urgent future task.
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21. Appendix I: The continuous case
We have the evidence [E, n] from this rigging, and we would like to draw conclusions about

the epistemic probability P(HE). In the continuous case, we are dealing with an aleatory

rigging Π(A) in Ω. The population is infinite (m→∞). Then, it is true that the likelihood

function obeys a binomial distribution in E and n.

  n 
(21.1.)      λ(G, E, n)  =  π(EG)  ∈  Bin(n, E)  =  nE  ⋅ GnE ⋅ (1 − G)n−nE

The tabula rasa distributions is given by

(21.2.)      τ(G)  ∈  Re(n, E)  =  1 ,

which yields the posterior distribution

                                           τ(G) ⋅ π(EG)                          n 
(21.3.)      ζ(GE)  =    =  (n+1) ⋅  nE  ⋅ GnE ⋅ (1 − G)n−nE

                                       ∫ τ(G) ⋅ π(EG) dG

The epistemic probability of the empirical hypothesis H, given the evidence E, is given by the

expected value of the posterior distribution E[ζ]


  
n 

(21.4.)      P(HE)  =  E[ζ(GE)]  =  ∫ G ⋅ (n+1) ⋅  nE  ⋅ GnE ⋅ (1 − G)n−nE dG

where the integral runs from zero from unity. By binomial expansion and integration we

obtain


  
n  

 
n−nE 

(21.5.)      P(HE)  =  (n+1) ⋅  nE  ⋅  ∑      k   ⋅ (−1)k+2/(k+2)

where the sum runs from k = 0 to n+nE.

The epistemic weight of the evidence E, with respect to the empirical hypothesis H, is given

by

(21.6.)      W(EH)  =  1 − D−1[τ] ⋅ D[ζ]  =  1 −  (1/√12) ⋅ D[ζ]
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because D[τ] = 1/√12. D[•] expresses the standard deviation of the distribution in question.

We start out by computing V[ζ], the square root of which is D[ζ]. It is true that V[ζ]  =  E[ζ2]

− E2[ζ]. E[ζ2] is given by


  
n 

(21.7.)      E[ζ2]  =  ∫ G2 ⋅ (n+1) ⋅  nE  ⋅ GnE ⋅ (1 − G)n−nE dG

where the integral runs from zero to unity. Binomial expansion and integration yields


  
n  

 
n−nE 

(21.8.)      E[ζ2]  =  (n+1) ⋅  nE  ⋅  ∑     k   ⋅ (−1)k+3/(−k−3)

where the sum runs from k = 0 to n+nE.

Thus, we obtain for the variance V[ζ],


  
n  

 
n−nE 

(21.9.)      V[ζ]  =  E[ζ2] − E2[ζ]  =  [(n+1) ⋅  nE  ⋅  ∑     k  ⋅ (−1)k+3/(−k−3) ] −


  
n  

 
n−nE 

            −  [(n+1) ⋅  nE  ⋅  ∑     k  ⋅ (−1)k+2/(k+2)]2

where both sums run from k = 0 to n+nE. The standard deviation D[ζ] = √V[ζ] is inserted into

(6.) above, whereby the epistemic weight of the evidence W(EH) obtains.
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22. Appendix II: The discrete case
We have the evidence [E, m, n] from this rigging, and we would first like to draw conclusions

about the epistemic probability P(HE). In the discrete case we are dealing with an aleatory

rigging Π(A) in Ω. The population is finite (m is ”small”). Then, it is true that the likelihood

function obeys a hypergeometric distribution in E, m and n.

  Gi   m − Gi 
  nE   n − nE 

(22.1.)      Λ(Gi, E, m, n)  =  Π(EGi)  =  
 m 
 n 

where Gi refers to the i:th of the (m+1) possible generator hypotheses. In the discrete case, G

is a discrete variable, which can assume r = (m+1) different values, where m > 1 is a natural

number. Hence, r > 2.

(22.2.)      G  =  [G1, G2, ... , Gr−1, Gr]  =  [0/m, 1/m, ... , ((m−1)/m), m/m]

The tabula rasa distribution τ(G) is given by

(22.3.)      Q(Gi)  =  1/r ,        i = 1, 2, ... , r.

which yields the posterior distribution

                                           Q(Gi) ⋅ Π(EGi)
(22.4.)      ζ(GiE)  =    =  Ψ/∑ Ψ

                                       ∑ Q(Gi) ⋅ Π(EGi)

  Gi
   m − Gi 

where Ψ  =  1/r  ⋅   nE   n − nE  , and where the sum runs from i = 1 to r = m+1.

The epistemic probability of the empirical hypothesis H, given the evidence E, is given by the

expected value of the posterior distribution E[ζ]

(22.5.)      P(HE)  =  E[ζ(GiE)]  =  (1/ ∑ Ψ) ⋅ ∑ Gi ⋅ Ψ

where the sums run from i = 2 to r.

The epistemic weight of the evidence E, with respect to the empirical hypothesis H, is given

by
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(22.6.)      W(EH)  =  1 − D−1[τ] ⋅ D[ζ]

The standard deviation of the tabula rasa distribution is not constant in the discrete case, but

depending on the population size m. The variance V[τ] is given by

(22.7.)      V[τ]  =  E[G2] − E2[G]  =  (1/r) ∑ Gi
2 − [∑ Gi/r]2  =  [∑ i/r − (∑ i)2]/r2

where the sums run from i = 2 to r. This variance declines with an increasing population size

(and, thereby, an increasing r). The maximum value is 1/4 when m = 1, and the value

decreases, rapidly for a start, then slower, when m is increased. The variance V[τ] converges

to 1/12 as m→∞ , i.e. when the discrete case approaches the continuous.

Thus, in the discrete case we must compute the adjustment factor D−1[τ] from time to time, in

order to obtain the epistemic weight of the evidence with respect to the hypothesis H. But

besides this, the procedure is analogous to the continuous case. We compute V[ζ], the square

root of which is D[ζ]. It is true that V[ζ]  =  E[ζ2] − E2[ζ]. E[ζ2] is given by

(22.8.)      E[ζ2]  =  (1/ ∑ Ψ) ⋅ ∑ Gi
2 ⋅ Ψ

where the sums run from i = 2 to r.

Thus, we obtain for the variance V[ζ],

(22.9.)      V[ζ]  =  E[ζ2] − E2[ζ]  =  [(1/ ∑ Ψ) ⋅ ∑ Gi
2 ⋅ Ψ ] − [(1/ ∑ Ψ) ⋅ ∑ Gi ⋅ Ψ ]2

where both sums run from i = 2 to r. The standard deviation D[ζ] = √V[ζ] is inserted into (6.)

above, whereby the epistemic weight of the evidence W(EH) is obtained.
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