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Preface

The background to this essay is my long standing and deep interest in the work of the British
economist John Maynard Keynes. Any one who has seriously dealt with matters of economic
theory must, sooner or later, delve deeper into the theory of probability.

In his young years, Keynes wrofeeatise on Probabilitly which — using his own words —

was aimed at sorting out the "curious relation between ‘probable’ and ‘ought’ ”. It was the
dissatisfaction which Keynes'’s and the rest of the Bloomsbury group felt with the Cambridge
philosopher G.E. Moore’s analysis of "ethics in relation to conduct” that spawned Keynes’s
writing of a treatise on probabili&/The intuitionist ethics of MooreBrincipia Ethica

conveys many important insights for the theory of probability, and it is crucial to understand
Keynes'’s theory of probability.

The aim of this essay is certainly more limited than Keynes’s extremely ambitious work.
Rather than analysing "the relation between probable and ought”, | want to argue what we
ought to mean by ‘probableNota bene this is a "normative” aim — it is about what the
concept of "probability’ought todenote, not what it actually denotes.

Probability is such a vague and multifaceted concept that a study of its actual usage would
result in a veritable snake-pit. At any rate, it would not avail itself to comprehension within
the limits set by the format of this essay.

My point of departure is that "probability” should be an objective concept. It should not
denote what welo believebut it should denote whattually isand what weactually know
This may be helpful to keep at the back of one’s mind when reading my account.

1videKeynes (1921).
2 Moore (1903), chapter 5 — "Ethics in Relation to Conduct” in particular. For testimonial evidence on Keynes'’s
and the Bloomsbury group’s attitude towards Mowige Keynes (1938).



1. Introduction

This essay bears the title "Epistemic Probability and Epistemic Weight — Means to Describe
Bayesian Posterior Distributions?”. The title, somebody said, sounds nice. But what is it really
about? The thing is not as difficult as the words. It should be no surprise that the concept of
"probability” is not entirely unambiguous. It can be given various interpretations, often named
"subjective probability”, "frequentistic probability”, and the like.

"Epistemic probability” is a concept coined by the British statistician lan Haékiing.
adjective "epistemic” origins from AristotleNichomachian Ethic€Epistemeoughly
translates to "true and eternal knowledge”, the acquisition of which is one of the three
Aristotelian virtues (the others beitechne- art skills, from which "technology” stems, and
phronesis- modest§). In the Anglo-Saxon philosophy literature, the term "epistemology” is
frequently used to denote the theory of knowledge.

Thus, epistemic probabilities have got to do with our possession of knowledge, or
information. Hacking carefully distinguishes between epistemic probabilities and "aleatory”
probabilities. As we should have some idea as to what epistemic means by now, we may
proceed to sort out the meaning of "aleatory”. Surely most of you have heard the familiar
guotation "alea iacta est” — the dice are thrown. "Alea” means die, and "aleatory” would,
somewhat clumsily, translate to "dice-wise”. But what exactly do we mean by saying that a
probability is "dice-wise™? Are not all probabilities "aleatory”?

3 Hacking (1975).
4 For an easy-to-read presentatioide Flyvbjerg (1994).



2. Aleatory probabilities

All of us are aware that a well-made die has a tendency to fall as often on any of its six sides.
After all, it is through dice games and dice experiments we gain our first insights into the
peculiar systematic of randomness. We have all patiently thrown dice in the secondary school
maths classes and noted the relative frequency of "sixes”, only to find that is converges
towards one sixth as the number of dice rolls looms large. To this has been added that the
outright definition of the concept of "probability” is the limiting value of a relative frequency,

as the number of trials becomes large.

Few doubt that probabilities of this "aleatory” kind basically expresses a physical quality of
nature®> The world is not deterministic, or pre-set, but randomness” really exists and
constitutes a highly palpable factor in our lives. And "randomness” can, to some extent, be
systematised by using the concept of aleatory probability, just because some events have a
greater propensity to occur than others.

At closer inspection, "randomness” or "aleatory probability” shows to be very difficult, not to
say impossible, to define. This is by no means unique for this quality of nature. The quality of
"mass”, for example, is not defined, but merely exemplified by an international kilogram
prototype. It is left to our imagination what "mass” really is. | associate myself with those who
take the view that "aleatory probability” must be one of those intuitively intelligible

properties.

| do not believe that any real definition of "aleatory probability” is possible. The closest we
can get is to circumscribe it into other, equally indefinable terms. This is a perfectly normal
procedure when it comes to the concept of probability, which is being practised by several
"schools” of probability theory.

In the theory of "subjective probability”, which does not deal with what we call "aleatory
probabilities”, but with something else, the concept "probability” usually denotes the
subjectively held "degree of belief”.

In the theory of "logical probability” the concept "probability” usually denotes a relation
between propositions, of the kind plfthen it is probable to the degre¢hatq.«, wherep

andq denote simple propositions. One assumes that such a relation always exists between
every pair of propositions, and that the probability mirrors the "rational degree of belief”, i.e.
thata is the degree of belief which a creature endowed with perfect logical intuition would

5 One of those who claim that probability dews exist is Bruno de Finetti/ide de Finetti (1990), introduction.
6 Videe.qg. de Finetti (1972), Savage (1954), Ramsey (1926, 1928).



hold beforeq, provided thap.” It should be pointed out that the concept of "logical
probability” does not refer to the same phenomenon as our concept of "aleatory probability”.

Thus, what we reasonably can do is to circumscribe our concept of "aleatory probability” into
terms that are intuitively comprehensible. First of all, we must make clear that aleatory
probabilities are not states of mind, but rather qualities of the surrounding world, qualities of
nature. Therefore, aleatory probabilities have no immediate connection to the subjectively
held "degree of belief”.

On the contrary, aleatory probabilities would correspond to something like the "rational
degree of belief” under certain idealised assumptions. By this | do not mean that aleatory
probabilities are "logical” in the sense that they express relations between propositions. It is
rational to hold a degree of belief that accords with the aleatory probability, but only under the
assumption that one has full knowledge about the true size of that aleatory probability. The
determining factor is the possession of knowledge or information. If one does not possess full
knowledge about the true size of the aleatory probability, then it is not certain that a rational
usage of the limited of the limited knowledge one actually has will lead to a "rational degree
of belief” that accords with the aleatory probability.

We must carefully distinguish between true properties of the world, and our knowledge about
those properties. The mere case that an event is aleatorily probable of thd'ld¢ateloes

not necessarily imply that we know it is. But to be able to discuss the magnitude of an aleatory
probability, we must first suppose that there is such a thing as "aleatory probabilities”. For this
reason, the question what we know about an aleatory probability subdivides into two parts.
The first part is the question how we can know whether there exists such a thing as aleatory
probability in nature. If we should answer that question in the negative, we would render the
second part — the question of the magnitude of that aleatory probability — meaningless. For
this reason it is absolutely necessary to presuppose that aleatory probabilities exist, if we are
to discuss their magnitudes.

7Videe.g. Keynes (1921), Carnap (1950).



3. Metaphysics and morality

The question whether aleatory probabilities exist is basically metaphysical. It is about the
nature of the world, whether we live in a "stochastic” world (in which aleatory probabilities
exist) or in a "deterministic” world (in which they do not exist). Metaphysical queries, one

would think, do not belong to this kind of work.

The thing is we just cannot let the question pass, but we must make clear, or at least roughly
clear, what kind of decision we make when we take on a particular metaphysical stance. My
own view is that this is chiefly moral decision.

For centuries, moral philosophers and theologians have discussed the question whether or not
man has a free will. Obviously the notion of a free will is intimately connected to the notion of
moral responsibility for our actions and deeds. For if the world would be strictly

predetermined by faith, so that we never ever really would have a choice, we could neither be
blamed for our misdeeds, nor praised for our kind actions.

Good and evil are merely fictions in a deterministic world, and the very thought of a
deterministic world is so absurd that we must dismiss it on the sole ground of its
consequences to morality. The only practicable stance is the notion that the world is not
deterministic, and that we ourselves — at least to some extent — can change the order of things
by making our own decisions and pursue actions thereafter. In this respect, man is an "image
of God”, as we can and do constitute what the British economist and philosopher G.L.S
Shackle termed "absolute originsAbsolute origins to chains of events in the world,

scenarios conditioned by and affected by our voluntary decisions.

But if the future is not deterministic, or ruled by fate, what is it then? Even if randomness”
should not exist as a phenomenon in nature, the future development of the world would still
not avail itself to exact prediction, since it will be affected by decisions made by human
beings. Free will, our passing fancies, whims and caprice, our considered doings, will render
that part of the world, which lies within our powers to affect, unpredictable, at least to some
extent. This would still be so, even if tbensequencesf our decisions at a certain point in

time, once these decisions were made, would be (at least in principle) possible to determine
exactly. This is so because of the possibility of new decisions in the future changing the
scenario implied by decisions made earlier.

But it is not even certain that a particular array of decisions will lead to determinable
consequences. The really huge decision, if we may talk about anything like that, was God’s

8 Vide Shackleg(1974).



decision to set the world off. Our perception of nature is of that kind. Some power — let us call
it God — once set the world machinery in motion, and rigged its development over time by
determining the natural laws. Ever since, says our mythology, God has not interfered with the
internal affairs of the world, but He has let the whole thing operate according to the initially
stated natural laws.

The deterministic perception of nature, which is usually associated with the French 19:th
century mathematician Marquis Pierre-Simon de Laplace, implies the very thought that
Laplace formulate8 A creature of supreme intelligence would, according to this train of
thought, if it had access to all correct natural laws, and the locations and moments of all
particles in the universe at a specific point in time, be able to compute the development of the
universe in every small detail. Today, we would associate this "supreme intellect” with some
kind of super-computer. The modern machine era association has turned the "creature” to a
machine — the Laplace Machine.

Such a deterministic notion of the universe was the fruit of the success of Newtonian
mechanics, and thieltanschawlominated science way into our century. Even such a
celebrity as Albert Einstein embraced it — "God does not play dice”, he said. In perfect
accordance, Einstein’s theory of relativity is a completely deterministic theory, which — in its
present form — is incompatible with the later developed and non-deterministic quantum
mechanics?

Quantum mechanics meant a breach with the deterministic perception of nature. The
metaphysical moral of quantum mechanics is that even if the natural laws are given by God
once and for all, these laws do not exactly determine what is going to happen, but they are
merely regularities in what is going to happen. When the world is viewed with the eyes of
guantum mechanics, the access to a Laplace Machine no longer helps. No intelligence in the
world can predict exactly what is going to happen in the future, even if it has full knowledge
of where the world stands at the moment. The quantum mechanical world is genuinely
"stochastic” in the sense that all future everessmore or less probable — meaning that they
have different propensities to occur within a limited time-period. What a Laplace Machine
would be able to do, is to compute different future scenarios, each of which has a particular
probability, a specific propensity to occur. But not even the Laplace Machine will be able to
say which of these scenarios will actually occur.

9 Laplace is also, paradoxically enough, known for his works on probability theory, in particular Laptée (

10 For a brilliant popular presentation of the incompatibility of these theaids Hawking (1989). An easily
comprehensible presentation of the history of particle physics from the antiques to our time is Bergstrém and
Forsling (1992).



It is this kind ofWeltanschathat is associated with the concept of "aleatory probability”. The
aleatory probability of a particular future event does not denote our subjectively held degree of
belief, but the rational degree of belief of the Laplace Machine. Since the Laplace Machine
know all natural laws, it follows that the rational degree of belief of the Laplace Machine is
exactly equal to the real propensity for that particular event to occur. Thus, the best
description of "aleatory probability” is given by expressions like "the propensity to occur”.

A matter of concern in the stochasfieltanschaus to make clear what makes some events
happen and others not. It may be frustrating to be forced to succumb before this query and
admit to ourselves that we simggnnotdetermine that in every single case. Still this is what
we have to do if we embrace a non-determinlgfedtanschault is not at all certain that the

most probable scenario will be realised. For that reason, the non-determinist mythology must
contain a measure of "events’ mystique”.

In the end, "chance” will determine the non-deterministic system, and the "will of God” lies
near at hand — what remains of it within the frames of the stochastic natural laws, that is — as
the unfathomable factor determining what is actually going to happen, and which thereby
determines if and when a merely probable event will become a fact, or whether it will not
occur at all, and thus form what | have chosen to call a nullity or a non-event.

A Weltanschapand mythology, of this kind comprises the possibility that man has a free will
and thus can constitute an absolute origin. In that way, the mythology is compatible with the
Biblical thought of man as an image of God, with an unfathomable capacity to generate
events, or nullities, within the frame set by the "Blind Watchmaker” at Genesis. That
mythology would be unthinkable in a universe of the kind that Laplace and Einstein and
seemed to have conceived.

Strangely, the non-determinist perception of nature thus constitutes a presupposition for our
own free will, and hence for the existence of good and evil. The existence of aleatory
probabilities is maybe not liable to proof, but titgion of their existence is moral

necessity. Our choice of mythology must be adapted to man’s needs to be a "moral
creature™! and any mythology which denies us the possibility of being moral creatures stand
in contradiction to our needs and our nature. The notion of a non-determinist, aleatorily
probable world provides for these needs and thus constitutes a good mythology. A good
mythology should of course be preferred to, and chosen before, a bad one.

11 A Zoon Politikon vide Aristotle’s Ethics



Whether or not a phenomenon like aleatory probability exists is, to repeat, a metaphysical
guestion. Metaphysical propositions cannot be proved, but only enter axiomatically into a
system. | have argued that in our context, the choice of metaphysical axioms is a moral
guestion. The question is therefore wrongly formulated. This is not about whether aleatory
probabilities really exist or not, but whether aleatory probabildigght toexist or not. My

opinion is that they ought to exist, and according to this view the axiom of future events being
aleatorily probable is simply held true. So far the question of existence.

When we have decided to postulate that aleatory probabilities exist, and that all future events
in the world are aleatorily probable, the question remaing probablehose events are. But
before we proceed to discuss the magnitudes of aleatory probabilities, we should take some
time to reflect upon the very concept of an "event”.

10



4. Fundamental concepts in the theory of probability

The universe possess@dentin time and space. By setting time and space limits, we may
subdivide the whole world infoartial universumsor event space€vent spaces are

delimited in a suitable way according to the phenomena we want to study. Examples of event
spaces are "Sweden 1994” or "the LEP accelerator at Stanford 13.05 hours 3 September
1987, or some similar delimitation. When we talk about the "world” we will mean such a
suitably chosen event space.

Apart from extent in time and space, the world possesses an aprapeftieswhich signify

various places in time and space. These properties, who describe what is the case in space and
time, constitutestates of the worldThe world is in a particular, actual state at any historic

point in time, and aleatorily probable states at any future point in time.

A complete listing of all properties of the world can seldom or never be carried out. In
practice, we limit ourselves to listing the properties whaelevantto the problem at hand.
Otherirrelevant properties we leave out of the listing. The states of the world are thus
partitioned in two categories, the first of which contains the relevant properties, and the
second of which holds the irrelevant properties. When talking about states of the world in the
following digression, we will refer to the list of relevant properties.

What is there to decide whether a property is relevant or not? The relevance must be judged
from its effects on the object under investigation — the aleatory probability we are seeking.
Properties of the world who do not affect, or negligibly affect, the object under scrutiny can
safely be bypassed. The sifting of circumstances must be done from a judgement of what is
reasonable, founded in our experience. The larger the precision we wish in our studies of a
particular aleatory probability, the more carefully compiled and the more extensive must be
the list of relevant properties

Eventsare defined by the presence (or the absence) or a subset of the world’s properties at a
certain point in time and a certain extent in space which we shall calieireses of the

event The premises of the event is determined by the amount of time andspapedby

the event, i.e. the minimum necessary extent in time and space required to "lodge” the event.

An eventa is said tooccurif (the propertiesk are the case ira[ r, t] (co-ordinates for the
premises o#). If x is not the case irgf r, t] , we say thathe complementary eventt@ a
occurs. Itis true thagf r, t] = [a’: r, 1], i.e. thata anda’ share the same premises. {.et
denote all other relevant properties of the worldairr[t]. Thus, in p: r, t] it is either true
that x andy” is the caseq occurs), or that "nox-andy” is the cased’ occurs).

11



As an event expresses a state of the world, it is true that for any futur@ eveéné typeA,
there is a numbdil — the aleatory probability @ — such that

(4.1) O<N(@<1;

(4.2.) itistruethafl(a) +MN(@)=1;

(4.3.) for the mutually exclusive everdsb, c, ... inQ, itis true that
M@aObOcO..) =M@ +N(b)+MN() +... 12

Let us now consider a number of event premises in the world. Let us assume for all these
premises that "only andy” is the case, or that "only natandy” is the case. Thus, the events

in each of these premises are equal in all their relevant properties. The only thing separating
the events is their position in time and/or space. We then say that the eventskiiodrofa

eventA = [a,, a,, ...,a,] , with the correspondingomplementary kind of event Afa’;, a’,,

cnd ]

When a kind of evermi has been defined, it must be true that a number of event premises
exist in event spac@ in which events of the typ& are possible. These event spaces we shall
call theA-premisesn event spac®. The number oA-premises irQ we shall call the
population mthe number of which states the highest possible number of evenssityge

Let Q, denote thé\-premises if2, andQ’ , the remaining part of that event space, or the
surroundingsof Q,. If Q" , =0 , so tha, lacks surroundings, we shall say tkatis
exhaustiveWhen the state of the surroundirfgs, is held constant, it holds true, regarding
future events typa = [a,, a,, ...,a,] in Q , that

(4.4) NMA) =Na) =My = ... =M(a,) .

The whole of this presentation surely appears both abstract and complicated. The reason for
its being rather complicated is that an event must be defined as a state at a particular time and
place. Since all events (except for the complementary event) cannot occur at that particular
time and place, or in those premises as we say, it is necessary to define a type of event from
the notion that events are to be alike in all respects but their time and/or place of occurrence.

The reason why we define types of events is that we want to specify the conditions under
which we know thaaleatory equiprobabilityprevails for all events in the population. But the
mere definition of event types then shows to be insufficient, except for the case when the

12 This is Kolmogorov’s axioms. The reference is Kolmogorov (1933).

12



premises exhaust the entire event space. If not, there will be "gaps” betwdeprémises,
and in these gaps, other properties may occur, properties which must not be changing if we are
to be certain that aleatory equiprobability prevails.

13



5. Quantitative probability and relative frequencies

Why, then, are we interested in discerning the conditions for alesjagrobability to

prevail for a series of future events? The reason for that is that we want to find a method by
which to measurthe magnitude of an aleatory probabilifjhe only way, as far as | can see,

to measure aleatory probabilities, is by first making sure that "laboratory-type” experimental
conditions are at hand, i.e. than the surrounding factors — the environment of the experiment —
remain unchanged, and that the trials we perform have equally large probabilities to turn out
"favourably”.

By afavourableoutcome of a trial we mean that an event of #mecurs. If a
complementary event of ty@€ occurs we say that the trial comes ontavourably The
number of favourable outcomes we denote 8y #the number of unfavourable byA# .

When aleatory equiprobability prevails, we can show — by the central limit theorem — that the
relative frequency of favourable outcomes converge towards a particular determinate
proportion between zero and unity, as the number of trialséimplen) becomes "large”, by
which is understood that it approaches the number of "possible” outcomEsis particular
proportion is the aleatory probability for a favourable outcome in each individual trial. Thus, it
is true, for all future events of tygein Q, and under the assumption that the state of the
surrounding€)’ , is kept unchanged, that

(5.1.) lim,_ . [#A)M = NA) =N(a,) =N(ay) = ... =N(a,) .

and, hence, that

(5.2) lim, . [#A)N] = NA) =N@,) =N@,) = .. =N@,) =
= 1-NA) =1-N(a) =1-N(@y) =...= 1-N(a,) .

It is inadequate to take the step from throwing dice, or pursuing some similar kind of

laboratory experiment, and find that the relative frequenoyergesowards a particular

value, todefinethe concept of aleatory probability on the basis of a converging relative
frequency. If the aleatory probability that a particular kind of event will occur, say, that the die
we are holding in our hand, shows a "six” when thrown, remains the same from trial to trial,
then the relative frequency will converge toward this very probability. But that does not

validate the opposite — that a converging relative frequency necessarily determines the aleatory
probability for a certain kind of event to occur. Let me take a simple example to illuminate

this.

14



Suppose we have an urn containing a large number of black and white balls. The proportions
are unknown. With the aid of a mechanical device we draw balls from the urn, without
replacement. How large is the aleatory probability of drawing a white ball?

The first thing that springs to mind is of course to draw a decently large sample in order to see
how the relative frequency of white balls develops. But that is not enough. What if the balls
are of different size, and our mechanical device more often draws large than small balls? And
suppose the proportions of white balls is larger among the large balls than among the small?
In that case we are no longer dealing with a "random” sample, and the relative frequency of
white balls is likely to diminish the more balls we draw. This is so, because the large balls
tend to be drawn first and they are "whiter” than the small balls that are likely to be drawn

later in the sample series.

It is true that there is a limiting value for the proportion of white balls, the knowledge of
which we do not get until we have emptied the whole of the urn. But we dare not make any
inferences as long as we do not know beforehand that our sample is "random”, i.e. that all
balls are chosen with an aleatory equiprobability.

To ensure that a sample series will give us a fair indication of the population’s composition,
we musffirst make sure that the sample draws are made with aleatory equiprobability. In other
words, the concept of aleatory probability enters at an earlier stage then the sample series as
such.

The example shows that when we are talking about a limited (finite) population size, the mere
fact that a certain proportion of "white balls” (or whatever we are sampling) exists in the
population is not sufficient for us to draw the conclusion that the aleatory probability of
drawing a "white ball” is equal to that proportion.

If we, on the contrary, would draw our sample from the urn with replacement, things turn out
differently. Then the varying sizes of the balls no longer prevents us from drawing inferences
from the sample to the population. This case is interesting for the reason that we have to do
with a population that is finite in a way — it consists of the limited number of balls in the urn.
But in another way it is unlimited, since we can make as many draws as we like from that
population.

When speaking of the "population”, we refer to the maximum number of trials, which in this
case would correspond to the maximum number of balls in the sample. Thus, the population is

15



infinite. Due to the fact that we are dealing with the same balls all the time, which are steadily
replaced to that urn, we ensure ourselves that the infinite population has stable properties. The
proportion of white and black, of large and small balls is not changing over time. To

illuminate the importance of this stability, | would like to give another example.

Assume that we are studying the proportion of deaths in cancer, say, within ten years after the
cancer has been diagnosed. Since the number of cancer cases up to now has been very large,
and the number of future cancer cases can be said to be unlimited (at the very least we do not
know how large it will be), we may safely suppose that the population is unlimited when we
include in it both historic and future cancer cases. Historically the proportion of deaths in
cancer has been sinking constantly. | do not know the true figure, but let us assume, for the
sake of the example, that it has gone down from 90 percent in the year 1900 to about 30
percent today.

The mere fact that the proportion has been sinking gradually over time tells us that there has
been no intertemporally stable aleatory probability. The aleatory probability in question, let us
denote it by1(A), has obviously gone down over time. For every specific point in time there

is a particular, unique value [dA). This unique value depends on the development level of
medical sciences, the access to adequate health services, hygienic conditions, etc. Let us
denote this by introducing a time index subsdrid,). The space must of course be specified
too.M(A) is likely to differ radically between Sweden and Uganda, for example. For this
reason a space indexing ought also to be entered, yiéldig).

It is characteristic that we are no longer dealing with a population with stable properties, at
least not when considering an extended period of time. The population is unlimited, though,
which separates this example from the first urn example above. Since the population does not
have stable properties, an investigatiofl¢#, ;) must be limited to such a short time span

that we may assume that the factors influen€i®,) remain more or less unchanged. What

we are looking for is what the economists calleris paribusonditions — that "everything

else remains the same”. For it is only when the relevant environmental conditions are
unchanged that the relative frequency may be usgdantitatively estimataleatory

probabilities.

It is the very fact that "the relevant conditions remain unchanged” that enable us to make
inferences when drawing with replacement from our urn in the prior example. In that case the
population had unchanging properties over time, despite its being unlimited. In the cancer
example the population’s properties were changing over time, which dashed our hopes to use
relative frequencies to estimate probabilities.
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In short, the conclusions of this somewhat tedious argument are the following:

Firstly, the concept of aleatory probability cannot be defined. It is an intuitively
comprehensible concept which denotes the "propensity to occur” of a particular event. The
existence of aleatory probabilities, and an aleatorily probable world, is a moral necessity.

Secondlyaleatory probabilities cannot be quantitatively estimated unlefisstveake sure

that conditions prevail that guarantee a seriedestorily equiprobablesvents. This requires

that (1) the relevant properties of the population and the surroundings are stable, and (2) that
the events make up what was defined above as a type of event, i.e. that they are equal with the
exception for their location in time and/or space.

The first condition — that the relevant properties of the population and the surroundings
remain unchanged — reminds of what is usually calledeteris paribusassumption in

economics (that "everything else remains the same”), which ensures us "laboratory type”
conditions where influencing factors may be isolated. This condition is indispensable for us to
be able to estimate aleatory probabilities.

The second condition — aleatory equiprobability — is needed because a population can contain
several different properties (black—white/large—small ball), where a correlation exists between
the occurrence of the different properties. Therefore it is necessary to define a type of event in
such a way that no relevant properties may separate the events from one another. In our urn
example this means that white balls may only be white — they must not be big or small besides
that. In that case "white balls” do not constitute a specific type of event.

The two conditions define what lan Hacking is going for when he speakStadrace Set-

up,13 or an "aleatory rigging”. An aleatory rigging is a prerequisite for the estimation of
aleatory probabilities, and provided this prerequisite is fulfilled, the aleatory probability will
coincide with the limiting value of the relative frequency when the number of trials becomes
large.

An aleatory rigging fills the function to guarantee that events with the properties we seek are
equiprobable. If we know that the events are equiprobable, it follows with certainty that the
relative frequency will converge towards a specific value between zero and unity. This is true
regardless of the population being limited or not.

13 Hacking (1965), chapter 2. References to Cournot, Venn, von Mises, Popper and more are foghduthro
Hacking (1965).
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The relative frequency does not fildafiningfunction, but only auantifyingfunction.

Aleatory probabilities cannot be defined, but they avail themselves to quantification — but only
under the particular forms which constitute an aleatory rigging. Since alegtgoyobability

is a prerequisite for the relative frequency to converge, aleatory probability must be a deeper,
or prior, concept than the relative frequency as such.

If the limiting value of the relative frequency wowdfinethe concept of aleatory probability,

we would first have to be able to define an aleatory rigging without making use of the concept
of probability in that definition. For if we use "aleatorily equiprobable” in the definition of the
events generated in an aleatory rigging, and then use the aleatory rigging to define the concept
of aleatory probability — then we are reasoning in a logical circle.

What we have above is pmstulatetwo things: (1) that all future events have an aleatory
probability, and (2) that all similar events, which constitute a type of eventsefasae

aleatory probabilities provided that the relevant properties of the surroundings remain
unchanged. Postulate (2) encapsulates the very notion of "aleatory equiprobability”, which
means that the converging relative frequencyasresequencef the aleatory rigging, not a
prerequisite for it.
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6. Kolmogorov's axioms and different types of probabilities

Most treatises on the theory of probabilitput Kolmogorov’s three axioms at the forefront.
They are usually described as a mathematical "least common denominator” to an array of
different philosophical interpretations of the concept of probability. In that way, it is argued,
the calculus of probability can be taken as common to all various interpretations. In that way,
the mathematical side of the theory of probability is separated from the philosophical side.

Still, Kolmogorov’'s axiom’s are usually presented in termevats But probabilities need
not refer to events. In the theories of Keynes and Carnap, probabilities nefiatit;ms
between propositiong he Keynes—Carnap kind of probabilities are often cétigital
probabilities

One of the earliest explicit formulations of this principle, we find in Keynegstise on
Probability.15> Keynes'’s idea is that probabilities express "relations of partial implication
[RPI]” between propositions. A RPI is a "softer” variety of logical implication. In ordinary,
demonstrative logic, the conclusions necessarily follow from the premises. The logic is two-
valued, and the operators either yield the value "true” or "false”, zero or unity.

Keynes conceived that a corresponding kind of logic could be constructed for positions in
between true and false, so that premises could support a conclusion partially. The better the
support for the conclusion, the higher the probability. The lowest value for the probability is
nil, which means that the premises make impossible the conclusion. The highest value is
unity, which means that the premises make necessary the conclusion.

There are interesting connections between Keynes’s concept of probability and what we have
chosen to call aleatory probabilities in the foregoing. Keynes emphasises that the construction
of a situation okquiprobabilityis required to make possible quantitative measurement of his
logical probabilities, and also for the ordinary theory of probability calculus to be applicable.
Even if Keynes’s theory was formulated before Kolmogorov’'s axioms, there can be little
doubt that Keynes meant that the quantitatively measurable probabilities would obey these
axioms!6

The parallel to our discussion of aleatory probability, and the need for equiprobability to make
them quantifiable, should be obvious. Nevertheless the two concepts are entirely separate.
Aleatory probabilities are concerned with events in the world, and their propensities to occur.

14 A good representative familiar to Swedish students is the presentation in Blom (1980), 23-24.
15 Keynes (1921).
16 vide Keynes (1921), particularly chapters 4 and 5.
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Keynes'’s probabilities are, to repeat, logical relations between proposition, for which there is
basically no need at all to assume any connection to the properties of the "world”.

Another category of probabilities is the "degree of belief” of the theory of subjective

probability. What a subject believes, or disbelieves, does not either necessarily have anything
to do with the properties of the "world”. Nor needs a belief pertain to events of the world. For
the time being, | will not enter into a discussion of subjective probabilities, but only conclude
that such probabilities are also, with the aid of certain methods of measurement, liable to
quantification by numbers between zero and unity. Such probabilities may also be assumed to
obey the Kolmogorovian axioms.

The conclusion here is that it is true that the Kolmogorovian axioms can be said to constitute a
mathematical "least common denominator” for the calculus of probability. And the calculus of
probability is the same in most approaches to the concept of probability. But it is incorrect to
formulate Kolmogorov’'s axioms in terms of events, since there are interpretations of the
concept of probability that do not involve events.

It is also important to remember that Kolmogorov’s axioms only define a particular kind of
magnitude with certain mathematical properties. This purely mathematical magnitude we shall
call akolmogorov weightKolmogorov weights are functions of the sul®gti = 1, ...,n of

some suitable s& (Q does not necessarily denote what we have called an event space
above).

In the theories of probabilityy, usually denotepropositions(subjective and logical
probability theory) oeventgsubjective and aleatory probability theory). But in princi@le,
may denote anything subject to weighting by a linear scheme of weights, and where the
weights sum up to unity i, i.e. weighting by Kolmogorov weights.

Kolmogorov's three axioms may generally be formulated in the following way:

(6.1.) Foreven®, in Q , there is a real numbe€r—the Kolmogorov weight @, — such that
0<Q©®)<1;

(6.2)) itistrue thaQ(®,) + Q(@')) =1, whered’; denotes all othe®; in Q ,i #] ;

(6.3.) for the mutually exclusive subs@sg ©,, O, ... InQ, itis true that
QO,00,00;0..) =Q(O) +QO,) +QO) +... .

The point of expressing Kolmogorov weights on this level of generality is that we are now
free to apply them to a number of different theories of probability, whether concerned with
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events or propositions, or something completely different. In that way, the Kolmogorov
weights really become the "least common denominator” of probability calculus which we
usefully avail ourselves of.

But there is more to it. For Kolmogorov weights need not at all be interpreted in terms of
probabilities. | many other situation, the construction of weighted averages for instance, we
use Kolmogorov weights without even thinking in terms of probability. Thus, an asymmetry
exists between probabilities and Kolmogorov weighAtgjuantitative probability is always a
Kolmogorov weight, but a Kolmogorov weight need not express a probaQiligntitative
probabilities thus express a special case of Kolmogorov weights, namely the case where these
weights express the magnitudes of probabilities.

This logical relation of implication between the magnitude of probabilities and Kolmogorov
weights is of great importance to grasp when we in due time will pass on to discuss epistemic
probabilities. But before we do, we will first discuss the problem how to choose models for
aleatory riggings.
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7. Stochastic variables, densities

Assume a functioX from Q to RL. X we shall call atochastic variableX is discreteif it can
take on a finite or countable infinite number of valués continuousf the first derivative of
the distribution function exists throughout the entire definitional set. We define the
distribution functiorof X as

(7.1) FX) = Q(X<x) ; -w<x<ow
thefrequency function

(7.2) fX) = Q(X=x) ; -—0o<x<oo
in the discrete case; and ttiensity function

(7.3)  a(X) = (X)X

in the continuous caseg(x) we shall call th&Kolmogorov densityn x.

Remember that a quantitative probability is always a Kolmogorov density, but not the reverse.
When a Kolmogorov density is complemented with a probability interpretation we call it a
probability density Thus, an aleatory probability density is a quantitative probability density
with an aleatory probability interpretation, etc. It is also true that a quantitative probability
density is always a Kolmogorov density, but not the reverse.

We will use lower-case characters throughout to denote densities. Kolmogorov weights are

denoted by a capit®), and Kolmogorov densities by lower-cagaleatory probabilities are
denoted by a capitdl, and aleatory densities by lower-casetc.
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8. Aleatory rigging and the choice of models
An aleatory rigging means that the type of evem Q , which we are dealing with, can be
described by a Bernoulli-type stochastic variable X denote that variable. It is true that

(8.1.) X=1 ifaoccurs
X=0 ifa’ occurs

The series of events of type(andA’) may be described by a vector of the numbers zero and
unity, arranged in the temporal and/or spatial sequenca #rata’ occur.

Since all events are equiprobable in an aleatory rigging, it follows that the series of Bernoulli
trials either is binomially or hypergeometrically distributed. If the population is unlimited, the
former is true; if it is limited (finite), the latter is true.

Limited populations cause difficulties in certain cases. The cases | have in mind are when we
do not knowhow largethe population is. It is easy to conceive a situation in wimohust be
limited, but where we do not know the sizenofThese cases are solvable if we can find a
probability distribution fom. But this brings on an unnecessary complication in our context,
and therefore we will not analyse this case further.

It should be pointed out that a finite population must be rather smalh{sa$0) for the use

of a hypergeometic distribution in numerical computations to make any significant difference,
compared to computations using the binomial distribution. The former converge to the latter
whenm grows large. In practice, thus, we apply the binomial distribution to large populations,
and the hypergeometric to small, where the limit between "small” and "large” must be set to
match the degree of precision we require in computation.

Thus, the choice of models is very simple in an aleatory rigging. Small population
hypergeometric distribution; large populatienbinomial distribution. LetY = [X;, X,, ..., X]
denote the variable created by the repeated Bernoulli trials. It is true that

(8.2.) Y O hyp(m, n, )

(8.3.) lim_. hypim, n, ) = bin(n, IT)

What we are to discuss in the following, and what epistemic probability and epistemic weight

is about, is thestimationof one of these model parameters, namely the aleatory probability
.
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The problem with aleatory probabilities is that even if we know that they exist (a morally
necessary assumption), in many cases we can still not koavlargethey are. As |
mentioned initially, the epistemic side of the probability theory deals witpaagession of
knowledge

To really know the true value of , it is necessary to possess full knowledge of the entire
population. In some simple cases (like the urn, for example), it is easy to find out the relevant
proportion in the population as a whole. But usually we must make do with knowing only a
part of the population, and then we must miakerencedrom this part to the whole.

To an omniscient creature, a Laplace Machine knowing all natural laws, such an inference
problem never occurs. The Laplace Machine always know the entire population; for such a
creature, there is no difference between the factual and its knowledge thereof. The inference
problem does not exist for such a creature — the theory of statistical inferences is there for us
common mortals, who often must make do with incomplete knowledge and partial
information.
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9. The inference problem

Our inference problem consists in our possessing an aleatory rigging of an evénintgpe

so that we know that an aleatory probabiflitfA) exists and thdil(A) has a particular

numerical value between zero and unity. But we do not know exactly what this value is. We
may have a rather good hunch about the value, by our knowledge of parts of the cof2ents of
To be able to systematise this, we must first define some more concepts.

As soon as an event has occurred, its passes from being aleatorily probable tdduming a
Thus, history is made of facts, and the future of aleatorily probable events. Facts are either
knownor unknown Either we know that the eveatvas the case, or we don't.

We cannot know for sure whether future events really are going to occur, or if unknown facts
really did occur. But for both these phenomena, we can — provided they can be regarded as
spawned by an aleatory rigging — make inferences which characterise our knowledge position
with regard to the type of event at hand.

Assume, for instance, that we are dealing with historic facts of thé\tfgpedA’) in an event

space. Some of all these facts we know, while another part of them is unknown to us. If we
can assume that the generation of these faatsdA’ was part of an aleatory rigging {o, we

roll back in time, so to speak, to a point before the events occurred, and assume that they were
generated by an aleatory rigging.

We can never know the exact magnitud€14), unless we first know all facts of typein

Q. But, to repeat, we can roughly infer the magnituda @). Of course, the precision of our
approximation depends on the amount of facts we kndw ifhe more facts we know, the
better approximation our estimatel®fA) will be.

Now, assume instead that we are dealing with events oRtyipean event spade, partially
constituted by historic time and historic facts, partly by future and events which have not yet
occurred (and which must be unknown by definition). The principle for making inferences
still remains the same. We use the historic facts we kn@vtomdraw conclusions about the
magnitude of1(A). This, of course, also presupposes thaan be assumed to be generated

by an aleatory rigging, both in the historical and the future pdbt of

Thus, the procedure for historical, but unknown, facts is in principle the same as for future
events. First, we delimit an event sp&eand define the event type We count the number

of A-premises i (the size of the population). We study whether or not the properties of the
surroundings are stable, which is a presupposition for aleatory equiprobability — a necessary
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condition for an aleatory rigging. If such is the case, we proceed to count how many @ases of
andA’ we find in Q — we collect known facts that is.

We use the facts at hand for making inferences té{beemises ir2, the contents of which
are unknown, either because they lie in the future and therefore lack content, or for the reason
that the historical content has not been registered and preserved.

This procedure leads to a more or less precise estimation of the aleatory probahiirty(of
The moreA-premises if2 we know the contents of, the better our estimatidn (@) will be.

In other words: The more facts of the typéandA’) we have inQ, the better we can estimate
the aleatory probability oA in Q.
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10. Evidence

The set of facts of typ& (andA’) which we know inQ, and upon which we found our
inferences, we shall call tlevidence sete {e;, e,, ... ,&}, where the elementg,, e, ... ,€,
constitute theevidencelLet us define thevidence value operata(e). Fore , it holds that

(10.1.) ¢€(e)=1 ifeis aknown fach ;
€(e) =0 ife is a known facA’.

Thus, the evidence value operator is the "factual” correspondent to the Bernoulli vdriable
which we defined for the outcomes of aleatory riggings. The evidence values may be arranged
in an evidence vector

(10.2)E = [¢(e), £(e)), ... .£(e)].

We define the evidence function
(10.3)E(E)=3e(e)h; i=1,2,..n.

whereE works like an ordinary arithmetical mean (expectation) opefaiidnus,E expresses
the proportion of events of tygeof all the facts of typ@& andA’ that we know inQ.

Thus, inferences regardimt(A) are made from the evidence we hav@irSince the ordering
of the elements in the evidence selbes not matter for our inferences (all events of &/pe
are both equal in properties and equiprobable in an aleatory rigginghtains as much
relevant information for our inferential purposes as dod@$erefore it does not matter
whether we usg& or e, and sincde is easier to deal with mathematically, it is also clearly to
prefer.

17 To distinguish the operator of the evidence function from an arithmetical mean in general, we shall use an
italic E to denote the former, and a non-italic E for the latter.
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11. Hypotheses

Possessing evidence is however not enough. We must also forhygatbeseso which we
can confront our evidence. It is necessary to carefully distinguish between two kinds of
hypotheses.

The one category, which we shall agdinerator hypotheseare propositions of the kind "the
aleatory probability for the eveatis I1”. All aleatorily probable events can be said to have
been generated in an aleatory probability process, with the aleatory probability, or the
generator probabilityr1. If I is unknown, we can always formulate hypotheses as to its
magnitude. But if the events cannot be modelled with an aleatory rigging, we will not get
much farther than to the mere formulation of the hypothesis.

The aleatory rigging guarantees repetition of equal events with equiprobabilityceteles
paribusconditions. When such a rigging is at hand, we may proceed from formulating
hypotheses to evaluating how reasonableness of the hypotheses. When subject to an aleatory
rigging, generator hypotheses will be propositions of the kind "the aleatory probability for
events of typd\ in Q isT1".

Since the real generator probabilityis a number between zero and unity, our guesses as to
the value of the generator hypotheses concefingust also dwell in the range from zero to
unity. In that way, generator hypotheses may be regarded as variables, who take on values
between zero and unity itRNVe shall denote this kind of variable ®yThus, it is true that 0
<G<1.

A generator hypothesis is either true or false. It is tr@=fl1, and false ifG # 1. Generator
hypotheses are never aleatorily probable. The reason for that is that they are propositions, not
events. A generator hypothesis might well be conceived as subjectively probable, if somebody
should believe thas to a particular degree between zero and unity. Analogously, it is
conceivable that a generator hypothesis would be logically probable, provided it was
combined with some other propositipnso thaip implies thaiG is rationally believable to a

certain degree between zero and unity. But a generator hypothesis can never be aleatorily
probable. So far the generator hypotheses.

The other category of hypotheses, which we shallerafiirical hypothesesre propositions
of two different kinds: (1) & will be the case”, wherais a future event, or (2p'was the
case”, wher@ was an unknown fact. The former type we shall@alpirical-future
hypotheses, the lattempirical-historical We shall denote empirical hypothesed-bW is
nota variable, but a symbol for "fixed” propositions.
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Empirical-future hypotheses are, as distinguished from generator hypotheses, neither true nor
false. The events which the propositions concern still have not occurred, and we cannot state
with certainty that they will occur. We can only say that it is aleatorily probable thiit

occur. But that is not what an empirical—future hypothesis does. It states categorically that ”
will be the case”. Such a proposition will, in due time, become true or false — the faamer if
occurs, the latter i does not happen. But which is the status of such a proposition, before it
can be factually determined whetlzereally is the case?

Empirical-historical hypotheses (type 2) are, like generator hypotheses, either true or false.
Eithera was the case, as the hypothesis stated, or it was not. But when unknown facts
constitute part of an aleatory rigging, we may reason "as if” we were dealing with future
events. We then regard the facts we know as a sample drawn from the "urn of history”, and
the facts which we do not know as the unknown contents of the "urn”.

We simply disregard that we are dealing with facts, and boldly reason as if these events did
not yet occur, or were "drawn from the urn of history”. The difference in our arguments about
historical and future events consists of the following: We know that certain, imperturbable
proportions prevail in the historic "urn”, and that these proportions constitute the aleatory
probability we seek. But in the future urn, the proportions are not necessarily fixed (as long as
the population is finite), despite that we know that a particular aleatory probability exists. In
practice, this makes very little difference.

Obviously, and empirical hypothesis is not aleatorily probable. Only events can be aleatorily
probable, and an empirical hypothesis, be it future or historic, is not an event per se. But,
analogously to generator hypotheses, we may conceive that empirical hypotheses are
subjectively and/or logically probable.

Moreover, | will argue, empirical hypotheses apestemically probableThis is a unique
property to empirical hypotheses — generator hypothese®egpistemically probable. At

this point, | must ask the reader for some more patience with the explanation of the exact
meaning of this.

From this section, we should bear in mind

(1) that different types of hypotheses exist — generator hypoteard empirical hypotheses
H;

(2) that hypotheses never are aleatorily probable ;

(3) that empirical hypotheses, but not generator hypothesespiatemically probable
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To bring our arguments further in the direction towards the concepts of epistemic probability
and epistemic weight, it is first necessary to define conditional Kolmogorov weights.
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12. Conditional Kolmogorov weights; Bayes’ theorem

Recall that aleatory probabilities are special cases of Kolmogorov weights, namely where a
particular interpretation ("the propensity to occur”) has been added to the purely mathematical
properties. An aleatory probability always is a Kolmogorov weight, but the reverse does not
necessarily hold true. Not to repeat the procedure of definition, we will carry out the definition
in terms of Kolmogorov weights. Exactly the same definitions may be applied analogously for
aleatory (or any other quantitative kind of) probabilities.

Assume two subsefsandB of some suitable s€1 (A andB may, but do not have to, denote
events). Theonditional Kolmogorov weight for A, given iB given by

(12.1.) Q(AIB) = Q(A n B)/Q(A)
with the continuous case correspondent
(12.2.) q(AOB) = q(A n B)q(A)

If B, B,, ... ,B,, are mutually exclusive, possess positive Kolmogorov weights, and together
exhaust the entirQ, then it holds true for evedythat

(12.3) QA = %; Q(B) (ADB)

with the continuous case correspondent

(12.4) oA = [ qB) [ATB) dB
and, under those same conditions, Bayes’ theorem holds

Q(B) [(R(ALB)
(125) Q@BOA) =000000O0O00O0

2; Q(B) (R(ALB)

with the continuous case correspondent

q(B) Lh(AB)
(126) qBOA) =0000000000

[ a(B) (ACB) dB
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Analogously to the denotations in Bayesian theory, we introduce the following terms: The
unconditional Kolmogorov weigl@(B;) we shall call thgrior weight In the continuous

case, we shall call the unconditional Kolmogorov dertgB) the prior density The

conditional Kolmogorov weigh®(B,[]A) we shall call thgposterior weightIn the continuous
case, we shall call the conditional Kolmogorov deng(iB/A) theposterior density

As long as we take into consideration the conceptual relation between Kolmogorov weights
and aleatory probabilities, we may boldly mix them in the same expression. The components

in Bayes’ theorem, for example, may partly consist of Kolmogorov weights, and partly of
aleatory probabilities.
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13. The likelihood function

Let us assume that we have access to certain evideihom an aleatory rigging. If we

formulate a generator hypothesis, i.e. that we choose a valydltgn we can always

compute an aleatory probability for the evidence at hand having been generated in a process
with the probabilityG. The process is a binomial process if the population of the rigging is
"large”, and a hypergeometric process if the population is "small”.

The procedure is to compute a conditional aleatory probabilify,fgivenG, which may be
written M(ECG). The value of this aleatory probability always depends on three factors: (1)
The value of the generator hypothe&sig2) the number of "trialsh ( = the number of
elements in the evidence sptand (3) the relative frequency of "favourable” outcomads=

the number of events tygein e divided byn). In case we have a "small” population, (4) the
size of the populatiom ( = the number of-premises i) must also be taken into
consideration.

Thus, the conditional probabilify(ECIG) is a function of three (and four, respectively)
variables. This function we shall call thieelihood function and we shall denote it By ).

We thus distinguish between two cases:T{i¢ discrete casevhere the population is
"small”, and where the likelihood function obeys a hypergeometric distributi@n k) m and
n.

DGi D:'m_Gi D
OnE Mn-nE O
(13.1.) AG,Emn) =QELG mn =00000O0O0O0OO0O

OmQAd
On O

whereG, denotes theth of the (1) possible generator hypotheses. In the discrete case,
namely,G is a discrete variable, which may assumel() different values: n, 1/m, ...,

((m~1)/m), m/n.

Case (2) ighe continuous cas&here the population is "large”, and the likelihood function
obeys a binomial distribution i@, E andn.

n
(13.2) A(G,E,n) = QEIG,n) = AnE Oroee (1 - G)nE

whereG is a continuous variable, 0G&< 1.
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14. The maximum likelihood-method, unbiasedness

We will now introduce a distinction between three different kinds of generator hypotheses.
WhenG is supposed to assume a unique value, we shall speak gimnt hypothesisWhen
the value ofG is supposed to lie within an interval (between a lower bégyrel 0 and an

upper bounds; < 1, wheres,; > G, , we shall speak of a@nterval hypothesiswhen several
hypotheses are conjoined by disjunctions (logical "or’—operatgrsve shall speak of a
composite hypothesis

A common procedure to distinguish the "best” of all conceivable point hypotheses is to seek
out that hypothesis which yields the largest possible probability for the samplé&msch

we did obtain, i.e. to seek the point hypothesis which has the largest likelihood value of all.
The is R.A Fisher$laximum Likelihood methdthe ML method]:8

This point hypothesis may easily be obtained by the usual methods to find the global
maximum of functions. The ML hypothess,, is the value ofs at which the likelihood
function reaches its maximum value. That is

(14.1) Gy = {G: OA(G, E,n)AG = 0 0 02A(G, E, N)aG2 < 0}

in the continuous (derivable) case. In the discrete case the same argument applies in principle,
only another algorithm must be applied to find the maximum. It can be shown that the ML
hypothesisG,, always coincides with the sample mean obtalebhat is

(142) G, =E

The ML method is generally considered to have the advantage to often yield "unbiased”
estimates. Unbiasedness means that if we have a large number of "ML-estit@g{ohsim
the same population, then the expected value of these estima€yys) ®{ll coincide with

the truell of the population.

But the principle of unbiasedness is a doubtful story. For assume that wieMawestimates
Gy j from the same population, and that each of these are a function of a sgnmpll€ip
the continuous case) dg[m, n] (in the discrete case), where 1, ... k. Then we can
always "pool” the samples by summing O, Y n] (in the continuous case) ortp E, > m,
> n] (in the discrete case), wheigE = 3 nE/Z;n; > m=3%m; >n=73n.

18 The method was allegedly used by both Daniel Bernoulli and Karl Friedrich Gauss (according to Hacking
1965, 176), but it is named after and associated to Fisher. The standard reference Fisher (1925).
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In other words, the very notion of counting expected values from several "estimates” from the
same population is self-contradictory. Our quantity of information must always bedhe
information we get fronall such "estimates”. The procedure to chop this quantity of

information up and compute "average estimates” by using the parts contains a self-
contradiction. We cannot both have access to all these "estimates” and be unable to "pool” the
to a common information background, from which we obtain a new estimate.

Therefore, the principle of unbiasedness is not applicable, and unbiasedness cannot constitute
a "guiding principle”, according to which we judge whether a method of estimation is good or
poor.

Let me give a simple example. We have the customary urn with a number of black and white
balls in unknown proportions. Attach unity value to "black ball” and zero value to "white

ball”. Now assume that we have drawn three balls from the urn, s thatandn = 3. Then

the ML estimate, which is "unbiased”, would 6¢, = 1.

For purely intuitive reasons, | am sceptical to the proposition that the "best” hypothesis would
be thatG = 1 in case we have drawn three balls from the urn. Personally, | would not at all
suggest thaG = 1 until | had drawn a rather large number of balls and found them all black.
But this raises the question whether this intuitive aversion to the ML method’s suggestion of
"best” hypothesis can be given a more solid foundation in rational arguments?

A characteristic of the ML method is that the choice of "best” hypothesis mirrors a particular
aspect of the curvature of the likelihood function. Where the vertex of the likelihood function
is located, there dwells the "best” hypothesis, according to this line of thought. But the
question is why this characteristic should be decisive?

If we want our "best” hypothesis to reflect the position of the "likelihood mass” (the area
beneath the likelihood curve), in my opinion it would be more natural to choosecttage
likelihood value than the maximum. In that caseAaarage Likelihood methddL method]
would be more reasonable than the ML method, to characterise the hypothesis which "best”
reflects the likelihood mass.

But not even the AL hypothesis needs be the "best”. We may have particular reasons to
believe that some hypotheses in the interval [1, 1] are more reasonable than others, regardless
of which evidence we obtained from our trials. Therefore, we may conceive giving some
hypotheses a larger weight than others in our estimate, so that weVesghéed Average

Likelihood methodWAL method], in which the array dfypothesis weightsbey the
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Kolmogorovian axioms, and hence are Kolmogorov weights. The AL method will then appear
as a special case of the WAL method, namely when all hypothesis weights are equal.

Thus we may conceive several different methods built on the notion that the "best” hypothesis
is obtained by studying the properties of the likelihood function. On this background it may be
objected that it is not the conditional probability of the likelihood fundil@&LIG) which is

our ultimate interest to obtain, but the "inversely conditioned” probabl{GLE).

For what we are seeking is not the hypothesis which renders our evidence (the sample we
happened to obtain) the most probdSllnstead we are seeking the hypothesis which is the
most probable, given our obtained evidence.

19 "Most probable” should be understood in a loose sense and not be interpreted in terms of maximisation.
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15. The Bayesian approach — two problems

To obtain the "inverse” probability (or posterior probability) we are seeking, we must "reverse
the conditioning”, which can only be done by applying Bayes’ theorem. In the discrete case,
we get

NG, (ECG) N(G,) O\(G, E, m, n)
(15.1) NGO =0000O0OOOOO0O =DO0O0ODOO0ODOOOO
2 N(G) O(EDG) 2 N(G) O\(G, E, m, n)

sincell(ELIG)) = A(G, E, m, n).

Here already we discern a serious problem, naméBy). We did already establish that

anything likel(G;) does not exist — hypotheses are propositions, not events. Only events can
be aleatorily probable. Therefore, hypotheses cannot be aleatorily probable, and that is exactly
why there is no such thing 8KG).

But if M(G,) does not exist, how can we "reverse the conditioning™? The only feasible way is
to use the possibilities to mix aleatory probabilities with other kinds of Kolmogorov weights
in Bayes’ theorem. When we to reverse the conditioning, using that procedure, we obtain

Q(G) M(ELG) Q(G) IN(G, E, m, n)
(15.2) QG[EF =000D00O0OD0O0ODO =0000DO0OO0ODOOD
2 Q(G) O(ELG) 2 QG) IN(G, E, m, n)

The result of the procedure — the inversely conditioned posterior W{GHIE) — is merely a
Kolmogorov weight, not an aleatory probability. For when we mix aleatory probabilities with
Kolmogorov weights in Bayes’ theorem (or other arithmetical expressions where this is
feasible), "least common denominator” will be determining the outcome property.

All aleatory probabilities are also Kolmogorov weights, but not the reverse. Thus we cannot
take it that an arithmetical operation results in an aleatory probabiliégs all other
magnitudes in the operation are also aleatory probabilities

Since our input values (the right-hand side of the Bayes’ theorem equation) are partly aleatory
probabilities, partly Kolmogorov weights, the result of the operation (the left hand side of the
equation) cannot express an aleatory probability. The "least common property” — that all input
values are Kolmogorov weights — will determine property of the output.
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The fact that a the outcome of reversing the conditioning is a Kolmogorov weight, and not
(necessarily) a probability, brings on some interpretation problems of philosophical nature.
These interpretation problems are common for both the discrete and the continuous case. But
in the latter case there is another problem, which we first we first must describe and solve.
Therefore we shall leave the interpretation problem for the time being and get back to it later.

The continuous case version of Bayes’ theorem is

q(G) LG(ELG)
(15.3) qGOE) =000O00O00OO0O =7

[ a(6) nEDo) de

The question mark indicates another problem, which only appears in the continuous case. In
the discrete case, we substituted the likelihood function both in the numerator and the
denominator of the right-hand side of the Bayes’ theorem equation. This cannot be done in the
continuous case, since the likelihood functidfG, E, n) = M(ECG) expresses an aleatory
probability, not an aleatorgensity But Bayes’ theorem includes an aleatdeysity not and
aleatoryprobability. How can we get by thdimensional problef

The aleatory probability for our sample, as expressed in the likelihood function, depends on
which point hypothesis we formulate. As we have seen, the likelihood value expresses an
"ordinary” aleatory probability, not a density. This causes concern in the continuous case,
when we have an infinite number of conceivable hypotheses in the interval [0, 1].

For this reason a point hypothesis cannot be given an "ordinary” prior WgiGht but only a
prior densityg(G).

Alternatively, we may formulate an interval hypothesis, and give it an "ordinary” prior
probability, but this procedure fails since it will not render a finite likelihood value
corresponding to that hypothesis. Why is that, then?

The likelihood function is a continuous function, the definitional set of which ranges from
zero to unity, namely the various feasible point hypoth@&saisout thd1 probability of the
population. The value set contains (conditional) probabilities. It is important to grasp that
these are perfectly ordinary probabilities with a "probability mass” of their own — they are not
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probability densities. It is tempting to prematurely conclude that the likelihood function, being
a continuous function, expresses probability densities. But such is not th# case.

The implication of this is that weannotform ”likelihood intervals” corresponding to interval
hypotheses, because each interval hypothesis will hawiite likelihood value. This may
best be illustrated by computing the likelihood value for a composite hypothesis, the
components of which lie within the interval we are interested in.

For example, let us assume that we are interested in the interval hypothesi&"9,6,%'.
Now, form the composite hypothesis = 0,500G = 0,7” The likelihood value for this
hypothesis is

(15.4) A(O,5;E,n)+A(0,7 ;E,n)

Let us now expand the composite hypothesis by adding more points into it, for ex&@mple ”
0,50G=0,550G=0,60G=0,6500G = 0,7". The likelihood value of this hypothesis is,
correspondingly,

(15.5.) A(0,5;E, n) + A(0,55;E, n) + A(0,6; E, n) + A(0,65;E, n) + A(0,7;E, n)

Now we see that the likelihood value will increase rapidly the more we "comb” the interval
with conjunctions of point hypotheses. This shows that we cannot integrate the likelihood
function to compute "likelihood intervals” corresponding to interval hypotheses.

The mere fact that the likelihood value swiftly exceeds unity when the "teeth” of the
hypothesis "comb” are condensed demonstrates that it is neither very meaningful to reason in
terms of interval hypotheses not in terms of composite hypotheses. Really, it is only the
simple point hypotheses who seem reasonable. The composite hypotheses only fill the
function to illustrate this argument, and the interval hypotheses aid — as we are about to see —
in the redefinition of the concept of "point hypothesis”, so that it gets a meaningful
interpretation in the continuous case as well.

Thus there is a danger in mixing "ordina@*weights (or probabilities) witlj-densities (or
probability densities) without reflection. To straighten this out, it is necessary to reformulate
the notion of point hypotheses. Instead of letting a point hypothesis denote one single

20 vide e.g. Hacking (1965), chapter XI, for a discussion of this. Hacking claims that "the likelihood value does
not obey the Kolmogorovian axioms”, which is an erroneous proposition, founded on the confusion caused by
failure to distinguish densities from probability masses. The lizetihvalue is a conditional probability, and
conditional probabilities always obey the Kolmogorovian axioms.
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numerical valu&s, we must regard the point hypothesis as a limiting value to an interval
hypothesiss, < G < G;, when the width of the intervalG = G, — G, approaches zero. Such
a limiting value is preferably defined for the lower bound of the int&Byalvhich gives us

the following expression for the likelihood value of a point hypoth8sisG, :

(15.6.) limg o AM(Gy<G<Gy,En) = limg o MENG<G<Gy,n) =

= limg_o MELG =G, + AG, n) = T(ELG,) = A(G,, E, n)
where A(G,, » ) expresses tHikelihood-densityatG,. By using point hypotheses in their
capacity as limiting values to interval hypotheses, and likelihood-densities, the probability

density for the point hypothesis will turn out "dimensionally compatible” with the likelihood
value. Let us apply this on Bayes’ theorem in the continuous case. We get that

q(G) L(ELG) T(G) [N(G, E, n)
(15.7) qGUE) = 0000000000 =00000000000
| q(6) EDG) dG | (@) NG, E, n) dG

The dimensional problem in the continuous case can thus be considered as solved, by going
from using a likelihood mags to using likelihood densities in the expressions. But the

former problem still remains — to give the prior weight (the prior density) and the posterior
weight (the posterior density), respectively, an interpretation in terms of probability. | must
ask the reader for further patience with this question.
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16. The WAL method is Bayesian!

Of course, we are not only interested in one single posterior W@{Gt’E) (or q(G,LE), in
the continuous casé), corresponding to one single point hypothesis. We are seeking the
whole spectrum of posterior densiti@EGLE) for all conceivable values @, ranging from
zero to unity.

This "spectrum” of posterior weights we shall call gosterior distribution The shape of the
posterior distribution depends on two categories of factors. One is the array of eviflence |
n]. The other is our choice of prior weights,iypothesis weight$or the different

hypotheses. Our choice of hypothesis weights defines a "spectrum” of prior weights, which
we shall call theprior distribution.

The shape of the posterior distribution thus partly depends on which prior distribution we use,
partly on which array of evidence we confront this prior distribution. The function of the prior
distribution is simply to weigh the evidence, as expressed by the likelihood value, by different
hypothesis weights. The result of this weighting is a certain posterior distribution.

The posterior distribution consists of Kolmogorov weights. Hence it has, like other
distributions of Kolmogorov weights (i.e. what is usually called "probability distributions in
statistics textbooks), properties like location and dispersion.

When we compute the hypothesis-weighted mean over all conceivable values of the generator
hypotheses, we obtain a unique value, and that unique value is nothing but what we have
previously called a WAL estimate bif.22

21 Not to encumber the presentation, | will only show the discrete case in the text. | leave it to the reader to draw
parallels to the continuous case.
22 This, of course, presupposes that the sum (the integral) is finite, so that such a weighted average exists.
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Let a(G) denote the frequency function of the prior distribution (the array of hypothesis
weights), and(G) the frequency function of the posterior distribution.

In the discrete case, it holds true that

(16.1) Gya = 2 G L(G),

where
Q(G) O(ELG) Q(G) IN(G, E, m, n)
(16.2) ¢G) =QGF) =0000000000 =00000000000
2 Q(G) O(ELG) 2 Q(G) IN(G, E, m, n)

In the continuous case, it is true that

(16.3) Gyu = J GZ(G)

where
q(G) O(ELG) mG) CA\(G, E, n)
(16.4) {(G) =qGE) = 0000000000 =00000000000
J q(6) T(ECG) dG | (@) NG, E, n) dG

It is perfectly correct to say that the WAL estimate is based on a Bayesian procedure. The
WAL estimation involves that we (1) compute a Bayesian posterior distribution, based on the
distribution of hypothesis weights (the prior distribution) which we find suitable, and (2)
compute the arithmetical mean of the posterior distribution obtained.

Thus the WAL estimate is nothing else than the mathematical expectation of the posterior
distribution, i.e.

(16.5.) Gy = EL(G)]

The same array of evidendeg, jm, n] may certainly give rise to different WAL estimates,
depending on the scheme of weights applied for the hypothesis weighting, i.e. which prior
distribution we apply. Therefore there is reason to name the WAL estimates after the prior
distribution chosen. If the prior distributiona¢G), we shall say that the WAL estimateois
weighted
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As mentioned above, the AL method is a special case of the WAL method, namely where
equal hypothesis weights are applied, i.e. d{&) (1 Rg0, 1). We then say that the WAL
estimate iszinweightegdsince an unweighted arithmetical mean is being applied.
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17. Dispersion of posterior distribution, evidence weight

As previously noted, the posterior distribution, like other distributions, has properties like
location and dispersion. A suitable way to describe these properties is to compute indicators of
location and dispersion.

The WAL method achieves one of the two — it gives us the expected value of the posterior
distribution, which is an excellent location indicator. But the WAL method does not render us
any idea of the dispersion of the posterior distribution.

The most common measure of dispersion is the variance (and the dimensionally adjusted
standard deviation). To complete the description of the properties of the posterior distribution,
it may be suitable to compute its variance,gbsterior variancewhich is defined by

(17.1) VE(G)] = EXG)] - EL(C)]
and theposterior standard deviatioD[{(G)] = VV[{(G)] .23

When the same prior distribution is being used consistently in weighting evidence from a

certain aleatory rigging, the variance (and hence also the standard deviation) will always be
diminishing when the number of elements in the evidence set increases. In other words, an
increase in the quantity of information will reduce the dispersion of the posterior distribution.

A case of little practical importance, but which is very important in principle, is when the
evidence set is empty, i.e. wher [I. Even in this case the posterior distribution will often (|
say "often” because the choice of prior distribution is crucial) have a definite expected value
and a finite variance. This is so, desjiitaot being computable (there are no terms by which
to compute the expected valdéE) )! This strange phenomenon depends exclusively on the
definitional peculiarity 0! = 1, which implies that

00 O
(17.2) 0O O= 040Y(0-0)1] = 11 = 1

This expression occurs both in the discrete and the continuous version of the likelihood
function, which guarantees that a likelihood value exists even e/hén. For the likelihood

function, the following simply holds true

17.3) AG,e=0,mn=0) O R0, 1)

23 The definitions and the ensuing argument presuppose that a prior distribution which allows these computations
has been chosen. This proviso will cause no trouble in practice.
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and corresponding in the continuous case. Under these conditions, the likelihood function
lets the prior distribution "right through”, so that the posterior distribution is congruent to the
prior distribution. My expression "often” may thereby be specified more precisely. The
posterior distribution possesses an expected value and a finite variance ever~wheif

and only if the prior distribution possesses an expected value and a finite variance.

Which, then, is the importance in principle of this case? That question has two aspects. One
aspect is philosophical — how do we interpret the posterior distribution and its properties when
we have no evidence at all? Regarding this question, | must keep the reader curious for
another while. The other aspect, which is purely mathematical, we can deal with right away.

The choice of prior distribution will affect the posterior variance. As long as we stick to the
same prior distribution, it holds true that the posterior variance will shrink when the sample
size grows (larger evidence set). When the evidence set is empty, the posterior variance
assumes its maximum value. When the evidence set accommodates the entire population, i.e.
n=m, (orn - o in the continuous case), so that we reach full knowledge about the whole
population, then the posterior variance will vanish. That is

(17.4) V[ =0 ifn=m

in the discrete case, and

(17.5) lim, V[ =0

in the continuous case, respectively.

This is true regardless which prior distribution we choose (within reasonable limits, set by
properties like convergence of integrals). All imply that the posterior variance converges
towards zero when our evidence "exhaust” the population. All prior distributions with finite
variance Vfi] yield this very posterior variance when the evidence set is empty — (2|
V[a], provided thae=0 .

The posterior variance is near at hand to use as an "information medsungh reflects the
balance between what we know, and what we do not know. There are however two problems
in this context: (1) The variance is not a standardised measure — the maximum variance

24 Many other information measures may be construed. In this connection we will concentrate on functions of the
posterior variance.
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(provided that it exists) always lies considerably below unity, and (2) the variance goes "the
wrong way” — it goes down whemincreases. An information measure ought to increase when
the information increases, not the other way around.

Thus the desirable properties of the magnitude we seek are the following: The magnitude
should (1) be a monotonously decreasing function of the posterior variance, (2) assume zero
value when the evidence set is empty, (3) assume unity value when the evidence set
accommodates the entire population (converge to zero wher in the continuous case).
Moreover it is an advantage is the measure is dimensionally adjusted, so that it mirrors the
standard deviation rather than the variance. A square root function of the variance thus seems
suitable.

The chief problem of this approach is that we must find a method to standardise the prior
variances. Since they are different depending on which prior we use, they yield different
values of the posterior variance when the evidence set is empty.

But as long as the prior variance is finite, we can use (the inverted value af)akinmum

posterior varianceé/-1[a] as an adjustment factor when computing the measure we are

looking for. By this procedure, the mathematical product of the adjustment factor and the prior
variance will always be unity, becauselM] (V[a] =1.

Since the adjustment factor is a constant, it also holds true that the mathematical product of
the adjustment factor and the posterior variance converges to unity as the evidence set
exhausts the population. Thus the adjusted posterior variance always goes from unity (when
the evidence set is empty) to zero (when the evidence set exhausts the population). Hence, the
adjusted posterior standard deviation (whose adjustment factof{¢e§ = vVV-1[a] ) also

has these properties.

The measure we are seeking, and which we shall callelght of the evidenasith respect
to the WAL estimate (denoted WbY,,,, may easiest be defined as unity minus the adjusted
posterior standard deviation, that is

(17.6.) Wy = 1-DYa] D[]

The measure characterises our information position and thus the degree of jpexfision
WAL estimate, given the chosen distribution of hypothesis weights (the prior distribution

25 "Precision” should be understood in a loose sense. We are not talking about the measure which is usually
called precision, and which is defined as the inverted value of the variahce V
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a(G)) . That is,W,,,, measures the bearing of the evidence on the dispersion of the posterior
distributionin relation to the dispersion of the used prior distributi&trictly speakingyMy .
does not measure our information position as a whole, but meraygdteonal information
provided by our evidence.

It was Keynes who first suggested that the quantity of evidence ("the argument”) supporting a
logical probability should be called "the weight of the arguméhtThis is an important part

of Keynes’s theory of logical probability. Even if our theory still moves on an abstract, purely
mathematical level, where we confine the interpretations of the Kolmogorov weights to regard
the likelihood value as an aleatory probability, there are parallels between the measure we
defined — the weight of evidence — and what Keynes calls "the weight of an argument”, clear
enough to make suitable the naming of our concept after that of Keyies’s.

We must make clear to ourselves the difference between the concentration around the
expected value (the WAL estimate) of the posterior distribution on one hand, and the weight
of the evidence. The concentration of the posterior distribution reflects two things: (1) the
choice of prior distribution and the concentration of that chosen distribution, and (2) our
evidence and thecbntributionto concentration” which they bring about. The weight of the
evidence, on the contrary, only refer to (2), not to (1).

Both the location of the posterior distribution (the WAL estimate as such) and its dispersion
are affected by the choice of prior distribution. Thus that choice is significant to the estimates
we obtain, and for that reason it must be subjected to closer scrutiny.

26 \Vide Keynes (1921), chapter 6.
27 Excellent presentations of Keynes’s argumentation can be found in Runde (1990, 1991).
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18. The choice of prior distribution

The likelihood function can be said to "encapsulate” the information, or the knowledge, that
we obtain by drawing a sample and studying the obtained evidence. The likelihood function
thus encapsulates an informatidition or the difference between the information position
before and after the acquisition of evidence.

The information situation before the acquisition of evidence we shall cadfitire
informationl ,, , and the information situation after the acquisition of evidence we shall
consequently call thgosterior informatiori,. It holds true that, = {I, O €}.

It is desirable that we choose our prior distribution in such a way that it reflects our prior
information. In that way our posterior distribution will reflect our posterior information, too.
The problem of choosing a prior distribution may thus be expressed as the quest for the
information functionp, which transforms the prior informatidg to a prior distributior(G).

(18.1.) a(G) = ¢l

An important philosophical question, which has to be cleared up before we can proceed to
erect a system where prior and posterior distributions reflect the respective information
positions, is whether there exists such a thing as a unique information function. The choice of
prior distribution thus implies that we must take on the difficult issue of how to

philosophically interpret the Kolmogorov weights (-densities) of which the prior distribution
consists.

But there is also another, practical aspect of the choice of prior distribution. As is it the case
that the larger the sample (the evidence set), the less important is the choice of prior
distribution to the location and dispersion of the posterior distribution. De various
distributions tend to converge when the sample grows large.

For that reason it is seldom necessary in practice to spend much mental effort on the choice of
prior distribution. One usually picks a suitable distribution which roughly fits with the prior
information, and which is mathematically convenient to handle. Such prior distributions are
preferably chosen withioonjugatedfamilies of distribution$8 In our continuous case, where

the likelihood function is binomially distributed, a prior distribution ought to be chosen from

the family of beta distribution&?

28 \We will not enter into a thorough discussion of these mathematical properties. Definitions and a discussion of
conjugated families of distributions are found in e.g. de Groot (1970), chapter 9.
29 For a definition of the beta distributioride e.g. Hogg and Tanis (1983).

48



But the solution of the practical problems do not imply any solutions of the philosophical
queries. Even if we should use a certain, conjugated prior distribution for the sake of
convenience, the fact still remains that we try to approximate our prior information by using

it. For such a procedure to be justified, we must first, to repeat, clear up whether we really can
characterise prior information by a prior distribution. aproximatethe information

function both presupposes that it exists, and that we know its shape.
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19. Facts, logic and the information function

When analysing the information function, we take particular interest in two problem
complexes. (1) What is really meant by the "prior information” (and the "posterior
information”)? Are these concepts subjective or objective? ; (2) How can we know that a
certain array of prior information yields one and only one specific prior distribution? (the
guestion of the existence of the information function), and — if it exists — How can we know
the shape of the information function? Let us take these questions on, one by one.

By "information” we mearacquired factual knowledg&ndowed knowledge (an infant

knows how to breathe without getting any instructions) are not counted into this category. Nor
do we count intuition — like an excellent mathematician can find a correct proof without
having seen it first — or talent — like a musician with perfect pitch can tune up a G just like
that. Factual knowledge are concerned with what is the case, and what is the case cannot be
known until it really has been the case. Factual knowledge must be acquired, it is empirical
knowledge. It is that kind of knowledge we are speaking of when using terms like
"information” or "knowledge” in our context.

Facts are objective. The very word "fact” refers to what is the case. It is not enough that one
person, or even many persoreggarda phenomenoh to be the case for it to be established

as a fact*. Something more is required, namelye@aminatioraccording to some

established ethical cod& for a phenomenon to be established as a fact. When a phenomenon
has passed such a scrutiny, and thus is established as a fact, it does not matter how many
persons who regafd a fact. It may well be that all are touchingly unanimouskhatnot a

fact.

If F has been established as a fact, and this is disputed by somebody (or by many), then it is
not only disputed thdt*, but also the very code of scruti@y ProvidedC is right, and tha€

has been correctly applied ko thenF* will stand fast regardless of how many who question

it.

A drastic, but illuminating, example, is the French historian Robert Faurisson’s denial of the
existence of gas chambers in Auschwitz. Eelenote the proposition that they did exist.

Now, it is an established fagt that the gas chambers did exist. Let us say that this fact has
been established by the cddeWhat Faurisson must show is ti@ais inadequate, or that

has been inadequately applied~tdOf course Faurisson is wrong — he is not able to show any
of these. That Faurisson happens to have followers does not alter the case. Even if the whole
human race would deny thiat it still remains thaE*. It is an absurd thought that the whole
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human race would dismi€¥ and it is equally inconceivable that the thorough documentation
of F*, by C, would be generally rejected.

All accumulated facts cannot be possessed by individuals, an obvious statement considering
the existence of libraries and databases. When correct facts are stored they form a pool of
objective experience. Such a pool constitutes a kind of collective memory bank. Historical
science, which is an important part of any scientific discipline, spends much of its efforts to
gather facts for such collective experience banks. This is not done indiscriminately, the aim of
the sifting is to only give real, true facts access to such banks. The information stored are
taken for objective facts, those who are discarded must live in the shadowy world of the
probable.

| will not go deeper into the intricate questions of ethics in science associated to this sifting.

But generally it can be stated that the question what should be established as objective facts
cannot properly be viewed as a matter of purely subjective considerations. Each scientific
discipline has its own code in this respect, and there are always unspoken or tacit rules on how
the discernment should be carried out. This codes have been laboriously established within
each separate discipline, and it may be difficult to find any general patterns of ethical rule
stretching across disciplinary boundaries.

Our prime interest in this context is however not the formulation of these rules. We are
content with the existence of such codes, and that they are applied to discern and establish
objective facts.

Factual knowledge can only refer to such objective facts. When we speak of knowledge (or
"information”), it is only allowed to refer to facts, not to any other personally or generally held
beliefs.

The prior information is the set of information we refer to in order to motivate the choice of a
particular prior distribution. This information mass may be large or small, as it pleases us. The
important thing is that we statéhichinformation we are referring to. The concept of

information is objective — it deals with facts in the collective experience bank. We need not
take all facts into consideration, but only the facts thatedexantto the problem at hand,

namely to estimate a particular aleatory probalilig}) of a certain aleatory rigging in the

event space.

The question of relevance is just as important in this context as it was to the rigging of the
aleatory process. What do we really mean by saying that factslewan® A reasonable
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definition is that facts are relevant if they affect the prior distribution. But is this not begging
the question? For how can we know what does, and what does not, affect the prior
distribution?

When we say "affect”, we refer tocausal relation The information function must refer to a
causal relation. We conceive that the prior information affects the prior distribution, and that
this affectation may be described by the information funapion

It is a difficult philosophical question to determine what a causal relation really is, and

whether or not we caknowthat one phenomenon causes another. The British 18:th Century
philosopher David Hume argued that we never really can know whether causal relations really
exist30 This is the famous scepticism of Hume’s. If Hume was right, that seems to imply that
we can never be certain about anything like an information function. Let us examine whether
things really are that bad.

The intricate philosophical questions about the concepts of cause and effect are closely related
to the theory of probability. However, going deeper into that complex of questions would

burst the frames of this essay. We must make do with the conclusion that causes are generally
dealt with using the same kind terms as with probabilities.

For example, we distinguish betwemal andknowncausesdausa essendindcausa
cognoscendirespectively. This distinction corresponds to that between aleatory and epistemic
probabilities. The former refers to the "propensity to occur” of an event, the laitéatove
knowabout that "propensity to occur”.

But causes may also be conceived to be subjective. Let us calptbbable causesThe
corresponding concept in probability theory is "the degree of belief’, or subjective probability.
We may also conceivegical causes as an objective concept, corresponding to the "rational
degree of belief” of the logical theory of probability.

When dealing with the information function it is important to distinguish between these
different categories, and the arguments associated with each ofghgm. a(G) can be
given different interpretations, even if we assume that the prior informgtierthe same set
in all cases.

30 The argument is to be found in Hume (1748).
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Thesubjective interpretatiot is that the consideration bf implies that the individual or
subject believes that(G). This interpretation is problematic, not least because thelgame
may lead to completely differen{G) depending on the subject. This, in a nutshell, is the
reason why the subjective theory of probability has its limitations for scientific purposes. If |
believe this, and you believe that — who is right? That question can only be answered if the
query really is a matter of fact.

If the concept of probability refers to the "degree of belief’, then in the end there are no
matters of fact in the theory of probability. The probable is what we believe, and to reason
scientifically about pure matters of belief may be very awkward. Experience has shown
subjective probabilities to be most useful in axiomatic decision theory, where decisions are
assumed to be governed by the agents’ "degree of belief”, as well as their preferences facing
different choice alternatives.

Thelogical interpretationis thatl , impliesa(G). Let us examine closer what this might
mean.

Assume that our present aleatory rigginglgf) in the event spad®, is equalto another
known (subset off,) aleatory riggind1(B) in the event spad®; . Then we know in advance
that(A) =T(B). The result of this is of course that the investigatioli @) is superfluous.
We already know thdil(A) = M(B), and the only generator hypothesis we hawg,is 1(B).
The prior distribution will then be a single-point distribution, wh@(€,) = 1, and the
posterior will consequently be that same. This case is obviously uninteresting.

Now assume that our present aleatory rigging @) in the event spad®, is asubsebf
another set of aleatory riggingge) in the event space&s, , wherell(¢) lies in between two
valuesl, andrll; . It follows thatl1(A) also lies in between these two values. All generator
hypotheses outside the interval)[ ,] are thereby excluded, and must be given zero
weights. But how do we know th&t(+) lies in the intervallll,, M1,]? We cannot, unless we
knowall riggings inf1(¢) in Q. , and if we know them, we also kndWA) in Q, which is a
subset of the former category.

More examples could be given. But the above should be enough to demonstrate the hopeless
character of the task to logically dedwd&) from|, , at least by using ordinary two-valued

logic. It is possible that there is a "relation of partial implication” (RPI) figro a(G), but

the question is which relation? And how large is "the rational degree of be{{@f'doesl

31 A fervent advocate of this interpretation is de Fin¥fitlee.g. de Finetti (1972, 1990).

53



bring about? No clear, practically useful theory has been constructed to deal with this
problem, and | suspect that such a theory will never be constructed, for that matter. The reason
for that might be that such a theory is plainly impossible to formulate.

So, even if there were a RPI going frogito a(G), and that relation would be liable to the
interpretation that the certainty lgf causes the rational degree of belief thi&), the fact
remains that we do not know this relation. If there really is a causal relgfign— a(G) , it
is certainly not &nowncausal relation.

Let us now talk oknowncauses, about logical relations wdemonstrablyexist.

In our first example, with equal riggings, we do have that kind of relation. Equality is an
ordinary, two-valued logical operator. If it is true that the riggih@p) in Q, = M(B) in Qg ,
whereQg O 1, , then it follows that all other values @f, thanl1(B) must be incorrect. The
only possible value dB, is1(B). In this case, the "rational degree of belief” t@atis I(B)
be unity, because it is a logical truth. Thus it is truelthat a(G,), wherea(G,) = 1ifG, =
M(B) , anda(G,) = 0 if G, # M(B) . A logical information functiomp can thus be defined in
this case. But we have no practical use of it whatsoever, as the case is trivial.

In our second example it is not possible (at least not with the means that presently are at our
disposal) to show that a logical implicatiop U a(G) exists. If we choose a pair of arbitrary
values ofG, sayG, andG,, we can neither show that [ a(G,) nor thatl, O a(G,),

wherea(G,) anda(G,) denote the values between zero and unity at the respective points of
the prior distribution. It is however not the case that the logical operator — the implidation

— has the truth-value zero. It does not exist.

This is our normal condition of proof. We can neither show that a(G,) nor thatl, O

a(G,). The conclusion that logical arguments are insufficient to determine a particular prior
distribution lies close at hand. That is to say that a logically based information fupction
simply does not exist in "normal cases” (which are the cases who may be of any interest). |
shall now argue that such a function stdhbe defined logically.

The foregoing argument shows that the concept of knowledge must be extended from just
accommodating the collective pool of facts to embrace its logical consequences as well. If a
"new” fact follows logically from other, already accessible facts, we would know this new fact
too, thanks to our knowledge of the former and the logical operators.
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Assume two statement of faeg andF,. Also assume thdd, O F,. If Fjis a factF* , it
follows thatF, is also a fack* ;. If we both knowF*, and the relatiofr, U F;, we also know
thatF*, as soon as we carry out the logical operaltion

For us toknowthatF*;, without having any other sources to this knowledge Eigrand the
relationF, O F,, three things are required: (1) titt, is aknownfact, (2) that the relatioR,

O F, is aknownrelation, and (3) that we apply the operator

It is also important to distinguish between theh valueof a logical operator, and what |
shall call theknowledge valuef a logical operation.
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The implication operatdrl has thdruth value matrix

F, true £*,) F, false

F,true %) True (1) False (0)

F, false True (1) True (1)

Table 1:The truth value matrix for logical implications.

Assuming that we always know how to apply the implication opefatothe following
knowledge value matrixolds true

F*, known F*, unknown

FoO F known |Known (1) Unknown (0)

Fo O F; unknown |Unknown (0) | Unknown (0)

Table 2:The knowledge value matrix for logical implications.

The interesting thing in our context is that all cells in the knowledge value matrix have zero
value when the logical implication (the operator) is unknown. This is shown by the second
row of the matrix, table 2.

There are good reasons to presume that a logical operator of the type "partial implication”
(RPI) also has this property. That is to say, if we do not know the relation, the knowledge
value will be "unknown” (or zero) even for the RPI as a whole. Since we do not know of any
RPI’s in reality, it follows that in all situations where a RPI possiblyld be occurringthe
knowledge value would still be zero.

The point of a prior distribution is that it shall "encapsulate” our prior knowledge — the prior
information. But if we apply a logical RPI approach it must hold true that the "encapsulated”
prior knowledge are non-existegxen if we have access to a large quantity of prior
information The reason for that is that wWe not knowthe logical relation (whether it be an

RPI or an ordinary two-valued implication) between the prior information and the prior
distribution. From this one is tempted to conclude that an information furgtannot be
defined using the logical approach. But let us not give up!

What theg-function is to achieve, is only a transformation of the prior informdtjdo a

distribution of Kolmogorov weighta(G), i.e. to numerical values between zero and unity
reflecting our prior knowledge with respect to different generator hypotheses. What, then do
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we knowa priori about the generator hypotheses? Well, in the "normal cadaiowe

nothing! We surelyelievethis and that, but strictly speaking Weownothing, despite all
conceivable prior information. The knowledge mass about the generator hypotheses following
from the prior information is — sad to say — hopelessly non-existent.

We must now recall that the prior distribution in no way shows our entire knowledge mass.
The only thing it shows is how much we know about the one hypotBgBiselation tothe
other hypothesi&, .32

This "relation” is usually regarded agjaotientwhen talking about probabilities. If the
probability ofAis 0.25, and the probability &is 0.75, themB is three times "more probable”
thatA. Thus the quotient of the probabilities is three. But we could just as well s&yighat
0.5 Kolmogorov units "more probable” th&n Then the "relation” between the probabilities
is a difference.

Why this talk about "relations™? Well, suppose the probabilith of the example were zero,
and the probability oB were zero as well, then it makes a huge difference whether we talk
about quotients of differences. The quotient between zero and zero is not defined, but the
difference between zero and zero definitely is.

Let us briskly return to the prior distribution. It shows the quantitative "relation” between our
knowledge about the one hypothe&Sjsand the other hypothesss. If this "relation” refers to

a quotient, the situation is bad. Since we do not kawythingabout any of5, or G;, the

guotient of these knowledge masses would be precisely "zero divided by zero”, which is
undefined.

But if the "relation” refers to the difference between our knowledge a@hpandG,, then the

whole thing turns out differently. We do neither know anything aBguior abouG,, so the
knowledge masses — be they non-existent — are equally large. The difference between them is
clearly zero.

From this follows the only possible prior distribution. For if the prior distribution is to give
equalQ-weights to all generator hypotheses (which mirror our knowledge position which is
equally non-existent with regard to all hypotheses), as well as sum (integrate in the continuous
case) to unity, then the prior distribution must be a rectangular distribution.

32 Of course we are dealing with a number of generator hypot&sesiumber which does not even need be
finite (in the continuous case the numbeGa¥alues is infinite). For the sake of reasoning we simplify by using
only two G-values.
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Thus, the prior distribution can be uniquely determined by using a logical approach, and that
approach always follows (in the "normal case”) the same line of argument and always yields
the same result:

(1.) Noknownlogical relation exists between the prior information and our knowledge about
different generator hypotheses.

(2.) Therefore wé&nownothing a priori about any generator hypothesis.

(3.) Since our knowledge position is equally poor with regard to all generator hypotheses, the
differencen knowledge mass as to the different hypotheses is zero.

(4.) To reflect this, the prior distribution must be rectangular.

Our knowledge position concerning the generator hypotheses may, despite all accessible prior
information, be described as an empty boardabala rasa Therefore we shall call the

applicable prior distribution th&abula rasa distributiort(G), which is uniformly distributed

for all values ofG.

(19.1) T(G) OREO, 1).33

When we ask ourselves the simple question "What is the aleatory probdbijtef the

present aleatory rigging @?”, de factowe cannot refer to anything outside this rigging.
Historical facts and experience give us no logical reason at all to favour the hypGijests
discriminate the hypothess;,. We mustunconditionallyask forl1(A) in Q, we have no

logically motivated right to favour or discriminate hypotheses. No matter how many facts we
include in our prior information, our prior knowledge regardi(@) is still a tabula rasa.

Thus the information function is extraordinarily simple. It yields the same prior distribution —
the tabula rasa distributiai{G) — regardless of the contents of the prior informakjon

(19.2) 1(G) = @l,)

The relationp between the prior information and the prior distribution is purely logical,
involving no subjective or "personal” judgement. Paradoxically, it is the circumstance of the
prior information not implying anything about the generator hypotheses which enables us to
draw the logical conclusion that the information function must always transform the prior

33 This is the prior distribution used by Laplace, and — some say — Bayes himself. The principle is to apply a
rectangular prior distribution when prior information is lacking is often called the "principle of non-sufficient
reason”, or the "principle of indifference”, as Keynes nameéidte Keynes (1921), chapter 4 ("The Principle of
Indifference”), and Hacking (1975), chapter 14 ("Equipossibility”) for a thgho discussion and further
references.
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information to one and only one kind of prior distribution, namely the tabula rasa distribution.
"The choice of prior distribution” is therefore a somewhat misleading expression, for the prior
distribution chooses itself, by pure logic.
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20. Epistemic probability and epistemic weight

According to lan Hacking, the modern concept of probability emerged in the Béais.

word probability is much older that that, as are many other, more primitive notions of the
probability concept. Since the 17:th Century a vast number of improvement have been made
in the technique of probability calculus and inferences. The interesting point in our connection
is however that both theses aspects — prior calculus and inferences — were there from the
genesis of the probability concept. Hacking emphasises that the probability concept always (or
at least during its modern existence) been "two-sided” or dual. On the one side there has been
"aleatory” probability, on the other side "epistemic” probability.

It is a fact that we do not have, and in many cases never will have, exact quantitative
knowledge of the true aleatory probability of empirical phenomena. This state of affairs

implies a need for epistemic concepts, by the aid of which we may characterise our knowledge
position about the aleatory probability we seek. Keynes argues emphatically, and very rightly,
that such an epistemic concept must be two-dimensional.

Keynes called the one dimension the "probability of the argument” and the other the "weight
of the argument”. We shall adopt Keynes’s categorisation in probability and weight,
respectively, but stress that we give those concepts meanings similar, but not equal, to what
Keynes did. We shall also add the adjective "epistemic” to distinguish these concepts from the
"aleatory” counterpart. What, then, do epistemic probability and epistemic weight really
mean?

We have already discussed the concept of aleatory probability in some detail, but the meaning
of the concept of epistemic probability was only briefly hinted at. It is really rather regrettable
that we could not proceed to the definition of the concept of epistemic probability until now.
But the thing is that the long journey here has been altogether necessary to clear up the many
enclosing problems.

As was mentioned initially, the word "episteme” means eternal and unchanging knowledge,
the acquisition of which is one of the three virtues of Aristotiéhomachian EthicsWhile
aleatory probability refers to threrum natura the nature of things — the propensities of
events to occur — the epistemic probability refers takaokwledge about the propensities of
events to occur

Aleatory probability is fundamentally objective. It is a property of nature that we cannot
change. According to Hacking, epistemic probability is fundamentally subjective. It is about

34VideHacking (1975), but also his exquisitaming of Chanc€1991).
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what we know, and what we know, Hacking tacitly argues, dwells in the minds of people and
therefore it must be subjective. | remain sceptical to this train of thought.

Hacking’s view that in the end, epistemic probability is subjective, appears erroneous to me.
The notion of anything beingpisteme- eternal, universal and true knowledge — also being
subjective, appears a self-contradiction to me. If there is such a thing as epistemic probability,
then surely it is not subjective, | would say. The Eternal, the Universal and the True must
reasonably be objective, and so must epistemic probability.

Epistemic probability reminds of what is usually called logical probability. Epistemic
probability is logical in the sense that it expresses an objective relation between a set of
evidence from an aleatory rigging, andesmpirical hypothesiabout the kind of event
defined in that rigging.

Recall that an empirical hypothesiss a proposition of the kinda’will be the case”, whera

is a future event, ord'was the case”, wheeeis an unknown fact doesnot denote a

variable, but a "fixed” proposition. First we distinguished between the empirical—future
hypotheses and the empirical-historical hypotheses, and found that the former type can be
neither true nor false, but that the latter type must be either true or false. Then we concluded
that if we are dealing withnknownfacts, we could reason "as if” empirical-historical
hypotheses were propositions about future events.

A hypothesis is never aleatorily probable, that goes for empirical hypotheses too. But
empirical hypotheses are epistemically probable. This is unique to empirical hypotheses —
generator hypotheses aret epistemically probable.

The events that empirical hypothesémakes such categorical statements about, are either
unknown facts or future events (which have not yet occurred and which we do not know
whether they will occur or not). At first sight, the categorical formulation may appear
somewhat odd, but at closer inspection, it is fully reasoned. Just think of the opposite, that we
would formulate an empirical—future hypotheldis’a mightoccur”. How can we state

whether such a hypothesis is epistemically probable? We cannot. The moment of uncertainty
(the "might” moment) in this example li@athin the proposition. It must be moved out of the
proposition to enable us to spestoutthe proposition as epistemically probable.

Epistemic probabilities obey the Kolmogorovian axioms — they are Kolmogorov weights, to
which we add a particular philosophical interpretation. Strictly speaking an epistemic
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probability is always @onditionalKolmogorov weight. The conditioning refers to the
evidence presented, preferably expressed by the value of the evidence fianction

The presupposition for an empirical hypothebis”a will be (was) the case” to be
epistemically probable with regard to the evideBgces that the everd of typeA is spawned
by an aleatory riggingl(A) in the event spac@.

Theepistemic probability of H, given, ive shall denote bi(HCE), and it is mathematically
defined as the expected value of the Bayesian posterior distribufjpwiign the tabula rasa
distributiont(G) is applied as prior.

(20.1) P(HCE) = E[0u =1]

Nota benehis is only thenathematicatlefinition. The epistemic probabili§(HLE) always
numerically coincides with what we previously called a "unweighted WAL estimate” of the
aleatory probability1(A). But, as we recall, the "unweighted WAL estimate” did not
necessarily have any particular philosophical interpretation. It is only in interpretation that the
epistemic probability?(HLE) differs from an ” unweighted WAL estimate”. The epistemic
probability is an objective numerical expressionvitiat we knovabout the aleatory
probability(A) in Q.

For every epistemically probable hypothdsjghere also exists a numb&fE[H) —the
epistemic weight of the evidence E, with respect to the empirical hypothesididh is
mathematically defined as the standard deviation of the Bayesian posterior distribgfion D[
= 1], adjusted by multiplication by the inverted valué[d] of the standard deviation of the
tabula rasa distribution.

(20.2) WEDH) = 1- D] (D[{o =1]

The epistemic weight(E[H) always numerically coincides with what we previously called
the "weight of the evidence with respect to (the unweighted) WAL estimaf@{Ajfin Q.

But that magnitude did not necessarily have any particular philosophical interpretation. It is
only in the interpretation that the epistemic welMKE[H) differs from "the weight of the
evidence...etc.”. The epistemic weight is an objective numerical expresstwowenuch we
knowabout the aleatory probabilify(A) in Q.

Epistemic probability is nothing but the epistemic correspondent to aleatory probability.
Aleatory probability refers to "the propensity to occur”, and epistemic probability to "what we
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know about the propensity to occur”. Alternatively, epistemic probability could be expressed
as the "objective location estimate” of an aleatory probability.

Epistemic weight does not correspond to the location, but to the degree of préci@uy

estimate of the true aleatory probability. Obviously, a well-founded estimate, which is built on
a large volume of evidence, must have a larger precision than a poorly founded estimate, built
on scanty evidence. In a way, the weight of evidence may be regarded an "objective indicator”
of the quantity of evidence, bow much we knoabout "the propensity to occur”. We might

also speak of the weight of evidence as an expression of the balance between knowledge and
ignorance, or the balance between what we do, and do not, know.

It is important to always characterise our knowledge position by statithghe epistemic
probability ofH, givenE, andthe epistemic weight of the evideriEavith respect tdd. Thus

we should always state a pair of numbd@&HCE) , W(E[CTH)] and not only one of the two
numbersLest we do, only one dimension will be reflected of our two-dimensional epistemic
position.

In the end, the concepts of epistemic probability and epistemic weight are not very
complicated. To comprehend their meaning must be an intuitive process. To compute them
numerically is not very complicated either, much thanks to the tabula rasa distribution being
generally applicable as prior.

Indeed, we only have two cases, which we shalltbaldiscrete casandthe continuous case
respectively These cases each correspond to one type of event space. The discrete case is
strictly applicable when the event sp&z@ccommodates a finite numberfAspremises

(when the population is finite); the continuous case applies when the nunfeprerhises is
infinitely large (the population is unlimited). In practice we disregard vi the population being
finite, provided it is large enough to make computations from the assumption of an infinite
population good numerical approximations.

For each case we have one, and only one, definite mathematical formula for the computation
of the epistemic probability, and one, and only one, definite mathematical formula for the
computation of the epistemic weight. Thus, there are four formulas all in all. These formulas
are to be found in appendices | (the continuous case) and Il (the discrete case), respectively.

35 "Precision” should be understood in a loose sense. We are not talking about the measure which is usually
called precision, and which is defined as the inverted value of the variahce V
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Epistemic probability and weight are uniquely determined by the evidEnoe fi] at hand.

In the continuous case, however, the size of the populatisromitted. The fact that only

three parameters affect the computations makes possible and desirable to "once and for all”
carry out thorough numerical computations of epistemic probabilities and weights for a large
number of evidence arrayg,[m, n], and to cross tabulate the results like this is usually done
in tables of statistical distributions.

In particular, the continuous case ought to be manageable, considering that only two
parametersH, n] are involved. The tabulation of the continuous case will thus be two-
dimensional (in the same fashion as the binomial distribution). The discrete case, however,
requires three dimensions (in the same way as the F-distribution), and will therefore me more
space-consuming as one cross-tabulation will be needed for every population size

As the sample (or the population) grows, the formulas will contain very large numbers. For
this reason, manual computation is unthinkable. Computer assistance is a necessity. My time
frames for writing this essay have unfortunately not been generous enough to allow the
required programming and computation. These computations are an urgent future task.
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21. Appendix I: The continuous case

We have the evidenc&,[n] from this rigging, and we would like to draw conclusions about
the epistemic probability (PICIE). In the continuous case, we are dealing with an aleatory
rigging M(A) in Q. The population is infiniteni— o). Then, it is true that the likelihood
function obeys a binomial distribution Ehandn.

on 0O
(21.1) A(G,E,n) = MEOG) O Bin(n, E) = OnE OOGE[(1- G)"nE
The tabula rasa distributions is given by
(21.2) (G O Rgn,E) = 1,

which yields the posterior distribution

1(G) O(ELG) on O
(21.3) GE) = 0000000000 = (+1)00nE OGE [(1 - G)rnE
J 1(G) o(EDG) dG

The epistemic probability of the empirical hypothésjgiven the evidenck, is given by the
expected value of the posterior distributiord JE[

on O
(21.4) P(HCE) = ER(GCE)] = J G (n+1) OOnE OCGRE ({1 - G)™nE dG

where the integral runs from zero from unity. By binomial expansion and integration we
obtain

Oon O _ On-nE Qg
(21.5) P(HOE) = (+1)0OnE OO0 O k OO-1)2/(k+2)

where the sum runs frokn= 0 ton+nE.

The epistemic weight of the eviderngewith respect to the empirical hypotheldisis given
by

(21.6) WEDH) = 1- D[1] [D[{] = 1- (IA/12)[D[{]
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because Of = 17/12. D[*] expresses the standard deviation of the distribution in question.
We start out by computing Y], the square root of which is gJ[ It is true that V{] = E[(?]
- E2[(]. E[¢?] is given by

on O
(21.7)  E{7 = [ G2 Qn+1) DOnE OCGRE ({1 - G)1E dG

where the integral runs from zero to unity. Binomial expansion and integration yields

On O _ On-hE O
(21.8) E{Z = (w+1)OOnE OO) O k  OO-1)3/(~k-3)

where the sum runs frokn= 0 ton+nE.

Thus, we obtain for the variancedy|

on O _ On-nE O
21.9) V] = ER4 -4 = [(m1)0OnE 00 O k  OO-1)3/(k-3)] -

on O _ On-nE O ,
- [(m+1)mnE D0Y O k  OO-1)e2/k+2)]

where both sums run frokn= 0 ton+nE. The standard deviation fJ[= VV[{] is inserted into
(6.) above, whereby the epistemic weight of the evid¥{&tH) obtains.
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22. Appendix Il: The discrete case

We have the evidenc&[m, n] from this rigging, and we would first like to draw conclusions
aboutthe epistemic probability (PICE). In the discrete case we are dealing with an aleatory
rigging M(A) in Q. The population is finitenf is "small”). Then, it is true that the likelihood
function obeys a hypergeometric distributiorEirm andn.

DGi D]m_GiD
OnE Mn-nE O
(22.1) ANG,Emn =NELG) =000000000O0

OmQOd
On O

whereG, refers to the:th of the (m+1) possible generator hypotheses. In the discrete Gase,
is a discrete variable, which can assume(nt+1) different values, whema > 1 is a natural
number. Hence, > 2.

(22.2) G = [G,6G,, ...,G_;, G] = [0/m, Um, ..., (fr—21)/m), m/m]|

The tabula rasa distributiafG) is given by

(22.3) QG) = 1, i=1,2, ...

which yields the posterior distribution

Q(G) O(ELG)
(224) (GUOE) =00000D0D0000 =WYSW
> QG) M(ELG)
D Gi ED m- Gi D
whereW = 14 MnE [ n-nE O, and where the sum runs from 1 tor = n+1.

The epistemic probability of the empirical hypothésjgiven the evidenck, is given by the
expected value of the posterior distributiord JE[

(22.5) P(HOE) = ER(GLE)] = (VY W) D) G ¥
where the sums run froire 2 tor.

The epistemic weight of the eviderngewith respect to the empirical hypotheldisis given
by
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(22.6) WEH) = 1- D1] (D[]

The standard deviation of the tabula rasa distribution is not constant in the discrete case, but

depending on the population size The variance M is given by

(227) VH = E[G]-EAG] = (1) 3 G2 [5 GAI? = [3 iff - (5 i)

where the sums run froime 2 tor. This variance declines with an increasing population size

(and, thereby, an increasing The maximum value is’4 whenm = 1, and the value
decreases, rapidly for a start, then slower, whesincreased. The variancetyfonverges
to 1/12 asm- o , i.e. when the discrete case approaches the continuous.

Thus, in the discrete case we must compute the adjustment fagtgrfidm time to time, in
order to obtain the epistemic weight of the evidence with respect to the hypbéthBsis

besides this, the procedure is analogous to the continuous case. We corgphulte\éguare
root of which is D{]. It is true that V{] = E[(?] — EZ[(]. E[(?] is given by

(228) FE7 = (VW) D) G2W
where the sums run frohF 2 tor.

Thus, we obtain for the variancedy|
229) VIl = ERA-Eq = [wyw D ceow] -[wsw D 6 ow]

where both sums run froim= 2 tor. The standard deviation fJ[= VV[(] is inserted into (6.)
above, whereby the epistemic weight of the evidé&tEe H) is obtained.
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